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ABSTRACT 

This final contract report describes the findings from the second year of a two-year 

research program investigating the characteristics of long-term operator adaptation in 

nuclear power plants (NPPs).  The report consists of two volumes.  This document, 

volume 2, describes the results of a systematic literature review that was conducted to 

understand the limitations of well-known statistical analysis techniques, namely null 

hypothesis significance testing and ANOVA.  This review uncovered six major points: 

1. Averaging across subjects can be misleading. 

2. Strong predictions are preferable to weak predictions. 

3. Constructs and measures should be distinguished conceptually and empirically. 

4. Reliability and magnitude should be distinguished conceptually and empirically. 

5. The null hypothesis is never true. 

6. One experiment is always inconclusive. 

Based on these insights, a number of lesser-known statistical analysis techniques were 

identified to address the limitations of more traditional techniques.  Several of these 

lesser-known techniques were applied to data from previous experiments conducted for 

JAERI.  The results of these analyses have confirmed results obtained previously, added 

to our understanding of our existing dataset, and have suggested methodological 

refinements for future experimentation.  Thus, these less-traditional analysis techniques 

are perhaps better suited to the purposes of cognitive engineering research than traditional 

statistical analysis techniques. 
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OVERVIEW 

A predictive model of human cognitive behaviour, which includes the mental strategies 

used in emergency situations in nuclear power plants (NPPs), is needed in the design and 

evaluation of human-machine systems.   To achieve this objective, a profound understanding of 

the characteristics of human operators’ long-term adaptation to the major behaviour shaping 

constraints in complex systems is essential.  This year’s projects builds on the work conducted in 

last year’s project for JAERI by further investigating the usefulness of novel measures of 

operator adaptation.  The results obtained will be useful for the development of a model of 

human operator cognitive behaviour and of criteria for design and evaluation of human-machine 

systems. 

The work conducted during this project is documented in two volumes.  Volume 1 

describes the results of analyses of data from tuning and fault trials in a 6-month longitudinal 

study of operator adaptation using the novel measures of adaptation that were developed in last 

year’s contract.  In addition,  volume 1 also provides a theoretical integration of this year’s 

findings and those obtained in last year’s project on long-term operator adaptation.  This 

document, volume 2, describes the results of a systematic literature review that was conducted to 

understand the limitations of well-known behavioural statistical analysis techniques, such as null 

hypothesis significance testing and analysis of variance.  In addition, this document describes a 

number of lesser-known statistical analysis techniques that were identified to address the 

limitations of the more traditional techniques, and shows how these techniques were applied to 

data from previous experiments conducted for JAERI.   

INTRODUCTION 

Whether it be in experimental psychology or human factors engineering, the statistical 

analysis of data almost always relies on two related techniques, null-hypothesis significance 

testing (NHST) and analysis of variance (ANOVA).  All of us have been taught these techniques 

and we have been told that they are the scientific way to analyse data statistically.  These 

techniques are so commonly used and so widely accepted that we frequently apply them to our 

data without a second thought.  And because the formulae for these statistical procedures have 

been embedded in easy-to-use software, their application is faster and less effortful than ever 

before.  Having said that, consider the following quotations: 
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Null-hypothesis significance testing is surely the most bone-headedly misguided 
procedure ever institutionalised in the rote training of science students. 
(Rozeboom, 1997, p. 335) 

The physical sciences, such as physics and chemistry, do not use statistical 
significance testing to test hypotheses or interpret data.  In fact, most researchers 
in the physical sciences regard reliance on significance testing as unscientific. 
(Schmidt & Hunter, 1997, p. 39) 

Hypothesis testing is the wave of the past (and never should have been a wave at 
all). (Loftus, 1993b, p. 255) 

The common belief that the precise quantity [p <] .05 refers to anything 
meaningful or interesting is illusory. (Loftus, in press, p. 165) 

I believe that the almost universal reliance on merely refuting the null hypothesis 
as the standard method for corroborating substantive theories ... is a terrible 
mistake, is basically unsound, poor scientific strategy, and one of the worst things 
that ever happened in the history of psychology. (Meehl, 1978, p. 817) 

When passing null hypothesis tests becomes the criterion for successful 
predictions, as well as for journal publications, there is no pressure on the ... 
researcher to build a solid, accurate theory; all he or she is required to do, it seems, 
is produce “statistically significant” results. (Dar, 1987, p. 149) 

It might be tempting to dismiss these strong criticisms as uninformed, “fringe” opinions.  

However, the authors that we cite include very well-known and highly-respected researchers.  

Thus, their criticisms should cause us to at least reflect upon, if not revise, the way in which we 

statistically analyse our data. 

Critiques of NHST and ANOVA go back at least to the 1960s (e.g. Bakan, 1966; Lykken, 

1968; Meehl, 1967; Rozeboom, 1960), have resurfaced periodically in the 1970s and 1980s (e.g. 

Hammond, Hamm, & Grassia, 1986; Hammond, Hamm, Grassia, & Pearson, 1987; Meehl, 1978; 

Rosnow & Rosenthal, 1989)], and have appeared with increasing frequency and cogency in this 

decade (Cohen, 1990, 1994; Hammond, 1996; Harlow, Mulaik, & Steiger, 1997; Loftus, 1991, 

1993b, 1995, in press; Loftus & Masson, 1994; Loftus & McLean, 1997; Meehl, 1990).  These 

critiques have been met with rebuttals (Chow, 1996; Hagen, 1997; Harlow et al., 1997; Serlin & 

Lapsley, 1985) but there is a growing consensus that there are sound reasons to justify discontent 
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with traditional methods of statistical data analysis.  To be clear, our purpose in this report is not 

to make an original technical contribution to this literature nor is to dismiss the use of the 

traditional techniques.  Instead, we aim to bring the practical implications of this literature to the 

attention of the human factors community so that we can suggest some alternative, 

complementary ways of analysing data statistically.  Our experience has been that most human 

factors professionals are not aware of these limitations.  Thus, they could benefit both from a 

deeper understanding of them as well as from the knowledge of a broader set of analytical 

techniques that address these limitations. 

The remainder of this report is organised as follows.  First, the results of our literature 

review will be presented.  We will identify six major points and the implications that these points 

have for alternative methods of statistical data analysis.  Second, we will use some of these 

alternative methods to analyse data from previous experiments conducted for JAERI.  In addition 

to providing general examples of how these lesser-known techniques can be applied in practice, 

these analyses also reveal more specific insights that are very useful for future research to be 

conducted for JAERI. 

LITERATURE REVIEW 

The results of the literature review are organised according to six major points: 

1. Averaging across subjects can be misleading. 

2. Strong predictions are preferable to weak predictions. 

3. Constructs and methods for measurement should be distinguished conceptually and 

empirically. 

4. Reliability and magnitude should be distinguished conceptually and empirically. 

5. The null hypothesis is never true. 

6. One experiment is always inconclusive. 

Although some of these points may seem self-evident, our review will show that they are 

frequently not heeded by psychologists and human factors engineers.  By making each of these 

points explicit, new ways of analysing data can be identified.  These lesser-known statistical 

analysis techniques may, in turn, provide a different, and perhaps more valuable, set of insights 

into our data.   
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1.  Averaging across subjects can be misleading. 

We will begin by discussing an issue with which many researchers are familiar but that is 

nevertheless frequently overlooked in the statistical analysis of data.  Both NHST and ANOVA 

involve averaging across subjects, and as a result, it is commonplace for researchers to assess 

statistical significance at an aggregate level of group means.  Yet, the act of taking an average 

only makes sense if the samples being aggregated are not qualitatively different from each other.  

Without looking at each subject’s data individually, we do not know whether the group average 

is representative of the behaviour of the individuals.  In fact, it is possible for a group average to 

be a “statistical myth” in the sense that it is not indicative of the behaviour of any single subject 

in the group. 

0
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# of TRIALS  
Figure 1:  Learning curve averaged over six subjects (Christoffersen, Hunter, & Vicente, 1994). 

Data from a longitudinal study conducted by Christoffersen, Hunter, and Vicente (1994) 

can be used to illustrate this point in a very demonstrable fashion.  Figure 1 is a learning curve 

illustrating the average time to complete a task as a function of experience.  The curve is based 

on data averaged over six subjects.  A power law fit has been superimposed on the aggregate 

data in Figure 1.  Based on visual inspection alone, we can see that there is a good fit between 
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the data and the power law curve.  A regression analysis showing a r2 value of 0.74 confirms this 

impression.  We might conclude from this aggregate-level analysis that these data provide 

support for the power law of practice (Newell & Rosenbloom, 1981).  However, such a 

conclusion might be premature.  Without looking at each subject’s data, we do not know whether 

the elegant power curve fit would provide an equally good account of the skill acquisition 

behaviour of each individual. 
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Figure 2:  Learning curve for one of the six subjects (Christoffersen et al., 1994). 

Figure 2 shows the learning curve data for one of the six subjects.  Again, a best fit power 

law curve has been superimposed over the raw data.  It is obvious that the degree of fit between 

the power law of practice and this subject’s data is very poor.  Thus, to use the average as a basis 

for generalising to individuals would be very misleading in this case. 

Plateaus in learning curves and the dangers of aggregating data over subjects are hardly 

new insights (Bryan & Harter, 1897, 1899; Woodworth, 1938).  Yet, as Venda and Venda (1995) 

have recently pointed out, these insights are still frequently ignored by many, although by no 

means all, human factors researchers.  We believe that, in part, these oversights result from the 

fact that NHST and ANOVA induce us to aggregate our data over subjects.  Thus, we must make 
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a special effort to examine the data for each individual to see if what is true of the group is also 

true of the individual. 

Taking the dangers of aggregating over subjects to heart can actually take us to new and 

perhaps more powerful ways of analysing data.  In cases where we use a within-subjects design, 

we can use each individual subject as an experiment and see if the theoretical predictions being 

tested hold for each individual.  An example of this type of test is provided by Vicente (1992) 

who compared the performance of the same group of subjects with two different interfaces, one 

labelled P and the other labelled P+F.  There were theoretical reasons for hypothesising that the 

P+F interface would lead to better performance than the P.  However, rather than just seeing if 

the means of the two conditions differed, Vicente also conducted a more detailed analysis to see 

if the theoretical prediction held for each and every subject.  The number of subjects for whom 

the hypothesised relationship (P+F > P) held was counted and then this count was analysed 

statistically by conducting a sign test (Siegel, 1956).  In one analysis, the P+F interface led to 

better performance than the P for 11 out of 12 experts, a result that is significant at the p < 0.001 

level. 

This example is important for at least two reasons.  First, in at least some applied 

situations, it may be more important for us to know how often an expected result is obtained at 

the level of the individual than at the level of an aggregate.  For example, say we are testing the 

performance impact of an advanced control room for a NPP.  Are we more interested in knowing 

whether the mean performance of the new control room is better than that with the old, or are we 

more interested in knowing the proportion of operators for which performance with the new 

control room is better?  It seems that the latter would be more valuable.  After all, a NHST or 

ANOVA could show that the new interface leads to a statistically significant improvement in 

performance, but an analysis like the one conducted by Vicente (1992) might reveal that the new 

interface only leads to better performance for half of the operators (a non-significant result with a 

sign test).  In this case, the aggregate level analysis is misleading, just as the aggregate data in 

Figure 1 are.  And because of the potential hazard involved, designers might be wary about 

introducing a new control room that will result in a performance decrement for half of its 

operators.  Second, this example also shows that non-parametric tests (e.g., the sign test and the 

χ2 test), which are usually thought to be weaker than parametric tests, can actually be used in 

innovative ways to test strong predictions.  This topic is discussed in more detail next.  
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2.  Strong predictions are preferable to weak predictions. 

Empirical predictions can be ordered on a continuum from strong to weak (Vicente, in 

press).  At the strong end, we have point predictions.  To take a hypothetical example from 

physics, a theory might predict that the gravitational constant, G, should be 6.67 x 10-11 

N•m2/kg2.  An experiment can then be conducted to see how well the data correspond to this 

point prediction.  Slightly farther along the continuum, we find interval predictions.  To continue 

with the same example, a different theory might only predict that 6 x 10-11 N•m2/kg2< G < 7 x 

10-11 N•m2/kg2.  An interval prediction is weaker than a point prediction because it is consistent 

with a wider range of results.  Still farther towards the weaker side of the continuum, we find 

ordinal predictions.  For example, a third theory might only predict the direction of the force of 

gravity.  In this case, all we would know is that gravity pulls objects towards, rather than away 

from, the earth.  Finally, at the weak end of the continuum, we have categorical predictions.  For 

example, a very primitive theory of physics might just predict that the force of gravity on the 

earth is statistically significantly different from zero, regardless of its direction (i.e., that gravity 

exists).   

Meehl (1967, 1978, 1990) has repeatedly pointed out that a mature science should make 

predictions towards the strong end of this continuum but that psychology has generally failed to 

do so.  The same claim can generally be made for human factors research, although there 

certainly are exceptions.  According to Meehl, one of the causes of this lack of maturity is that 

researchers have let the constraints of the statistical analysis techniques with which they are most 

familiar (i.e., NHST and ANOVA) govern the strength of the predictions they make.  And 

because NHST and ANOVA are usually used by behavioural researchers to determine if an 

effect is significantly different from zero (i.e., if the independent variable has no effect 

whatsoever), psychologists and human factors researchers generally restrict themselves to testing 

categorical predictions, the weakest area of the continuum and thus indicative of an immature 

scientific practice.  Because we are so accustomed to following this procedure, we may not even 

be aware that we are merely testing a categorical prediction.  However, the hypothetical example 

about gravity cited above shows just how weak such a test really is.  Granted, pairwise 

comparisons of means can be used to test ordinal predictions at an aggregate level, but this is still 

a far cry from the interval and point predictions located on the strong end of the continuum 

described above.   
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It could reasonably be argued that most areas of human factors research have not reached 

the level of theoretical maturity to make point or interval predictions.  Even if this is so, it does 

not mean that we cannot be more ambitious than we have been in the past.  Rather than letting 

our familiar statistical analysis techniques keep us from achieving a mature science, we should 

instead seek out a different set of techniques that can be used to test stronger predictions.  The 

innovative work of Hammond, et al. (1987) provides an example of how we can begin to make 

stronger predictions and how these can be tested using untraditional statistical analysis 

techniques. 

Hammond et al. (1987) were interested in comparing the efficacy of intuitive and 

analytical cognition in expert judgement.  Accordingly, they conducted an experiment to 

investigate the impact of two independent variables, depth task characteristics and surface task 

characteristics, on the level of performance and the type of cognitive processing of highway 

engineers (i.e., intuition vs. analysis).  There were three levels for the depth task characteristics 

dimension: a) an aesthetics task that was intended to induce intuition; b) a highway capacity 

calculation task that was intended to induce analysis; and c) a safety judgement task that was 

intended to induce a hybrid of intuition and analysis.  Each of these tasks was presented in three 

different formats, each with a different set of surface characteristics: a) film strips that were 

intended to induce intuition; b) formulae that were intended to induce analysis; and c) bar graphs 

that were intended to induce a hybrid of intuition and analysis.  Each highway engineer 

experienced each of the nine combinations of depth and surface task characteristics. 

From a traditional perspective, this experimental design fits very neatly into a between-

subjects 3 x 3 ANOVA.  However, analysing the data in this fashion would only allow the 

experimenters to test some comparatively weak predictions.  Statistically significant results 

would merely suggest that the effects of the independent variables (or their interaction) is 

unlikely to be zero.  This only amounts to an evaluation of a categorical prediction (equivalent to 

the fact that gravity exists).  Furthermore, the ANOVA would only evaluate the results at an 

aggregate level of analysis, and thus, could mask some important individual differences (see the 

previous section). 

Hammond et al. (1987) addressed these deficiencies in three ways.  First, instead of 

evaluating the NHSTs associated with ANOVA, they instead tested the prediction that the results 

from the nine experimental conditions should occur in a particular order predicted by the theory 
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driving their research.  Note that this is a much stronger prediction.  Instead of just hypothesising 

that the effect was different from zero, Hammond et al. were committing to one specific ordering 

of their experimental conditions.  And because there was a total of nine conditions in their 

experiment, there are many possible orderings that could conceivably occur (9! = 362,880).  Yet, 

only one of these orderings is perfectly consistent with the prediction they were making.  

Second, instead of testing this ordinal prediction at the level of a group aggregate, they tested it 

at the level of each individual subject.  That is, Hammond et al. (1987) predicted “the exact order 

of appearance of a specific type of cognitive activity for each engineer separately, over a set of 

nine conditions, each of which included a sample of 40 highways.  Thus there were in effect 21 

individual experiments, each of which tested the ... theory” (p. 769).  Because of the level of 

specificity involved, the risk of being wrong is again greater than with ANOVA, thereby 

resulting in a stronger set of predictions.  Third, to test the predicted ordering on a subject by 

subject basis, Hammond et al. relied on correlational analysis and χ2-based order table analysis.  

The technical details can be found in Hammond et al.’s paper, but the basic rationale is similar to 

that for the Vicente (1992) study described in the previous section.  Non-parametric tests were 

used to determine how often the predicted order of results was observed at the level of 

individuals rather than at the aggregate level of group. 

The study conducted by Hammond et al. (1987) provides a nice role model to show how 

the maturity of our science can be enhanced by using alternative statistical analysis techniques to 

test stronger predictions than those that are usually assessed using NHST and ANOVA. 

3.  Constructs and methods for measurement should be distinguished conceptually and 

empirically. 

Even if we are able to make and evaluate stronger predictions, the level of our science is 

only as good as the empirical methods we use.  Of particular importance is the relationship 

between the constructs that are used to make predictions and the methods of measurement that 

are used to evaluate those predictions.  This linkage is one of the key epistemological 

foundations supporting any kind of scientific activity (cf. Xiao & Vicente, 1997).  As Campbell 

and Fiske (1959) pointed out in their seminal paper almost 40 years ago, there are certain basic 

criteria that must be met before we can confidently interpret a pattern of experimental results in a 

meaningful fashion.  Among the most important criteria are reliability, convergent validity, and 

discriminant validity.  Reliability refers to the extent to which similar results are obtained when 
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the same construct is assessed using the same method of measurement under comparable 

conditions.  If results cannot be replicated, then there is a lack of reliability.  Convergent validity 

refers to the extent to which similar results are obtained when the same construct is assessed 

using different methods of measurement under otherwise comparable conditions.  If different 

methods give different results, then the pattern of findings is contaminated, and thus, difficult to 

interpret.  Instead of observing the effects of the construct of interest, we are instead observing 

the effects of the way in which the construct was measured — a much less interesting 

phenomenon, unless one is a methodologist.  Finally, discriminant validity refers to the extent to 

which different results are obtained when different constructs are assessed using the same 

measurement method under comparable conditions.  If different constructs lead to similar results, 

then the pattern of findings is again contaminated, and thus, difficult to interpret.  Instead of 

observing differential effects across the various constructs of interest, we are instead observing 

similar effects caused by the method of measurement. 

A few hypothetical human factors examples can help make these abstract concepts more 

concrete.  Say we are conducting an empirical investigation of the interaction between spatial 

ability and mental workload for a particular task context.  How could the three criteria identified 

by Campbell and Fiske (1959) be operationalised?  Beginning with the issue of reliability, 

whatever method we use to measure each construct should lead to consistent results under 

comparable conditions.  For example, our test for spatial ability should have a high test-retest 

correlation.  Otherwise, we cannot have much confidence in our knowledge of one of the key 

constructs in our experiment.  Moving on to convergent validity, different methods of measuring 

the same construct should lead to consistent results under comparable conditions.  For example, 

if we have two different methods for measuring mental workload (e.g., a computer-based version 

and a paper-based version of a subjective rating scale), we would ideally like those methods to 

give the same results for the same subject for a particular trial.  If the two methods give different 

results, then the variance in our data is being caused by the method of measurement.  In such a 

case, we cannot make any confident inferences about what we are really interested in, namely the 

construct of mental workload.  Thus, like reliability, convergent validity is a prerequisite for 

sound scientific knowledge.  As for the third criterion of discriminant validity, the same 

measurement methods should lead to different results for different constructs of interest.  For 

example, a computer-based test of spatial ability should be highly correlated with a paper-based 
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test of spatial ability and not correlated at all with a computer-based assessment of mental 

workload.  If this criterion is not met, then we have the case of too high a correlation between 

tests that are intended to measure entirely different constructs.  Once more, such a result would 

provide a very shaky foundation for scientific knowledge. 

In each of these three cases, the key objective is to determine whether the results we 

observe can be safely attributed to the content of the constructs in which we are interested rather 

than the form of the methods that are used to measure those constructs.  Campbell and Fiske 

(1959) refer to the latter as “methods variance”.  To make sure that methods variance is not 

contaminating our results, we need a way to evaluate reliability, convergent validity, and 

discriminant validity empirically.  To achieve this goal requires that any one experiment have at 

least two constructs and at least two methods of measurement.  Campbell and Fiske proposed an 

analysis technique based on these insights that can allow experimenters to determine whether in 

fact they are measuring what they wish to measure rather than something entirely different.  This 

technique, called the Multitrait-Multimethod Matrix (MTMM), was originally developed for the 

specific case of investigating individual differences (thus, the emphasis on traits).  More recently, 

the technique has been extended by Hammond, Hamm, and Grassia (1986) so that it can be 

applied to a much wider range of behavioural phenomena. 

Campbell and Fiske (1959) used the MTMM technique to review the literature on 

individual differences.  Their analysis painted “a rather sorry picture” (p. 93) of the validity of 

the measures that had been used in that literature.  Most of the results that had been generated 

were more likely to have been determined by the methods used for measurement than by the 

traits that had been hypothesised to account for the results.  The MTMM technique provides a 

way of identifying such situations.  However, as Hammond et al. (1986) pointed out, the 

technique is rarely used in experimental psychology.  The same is surely true of human factors; 

studies using the MTMM technique are exceedingly rare.  Researchers tend to analyse their data 

using the familiar NHST and ANOVA techniques.  However, these techniques do not provide an 

analytical means for evaluating reliability, convergent validity, and discriminant validity, as does 

MTMM.  As a result, researchers cannot know if their results are being caused by methods 

variance or not.  Hammond et al. make a very strong case that this situation makes it exceedingly 

difficult to develop a cumulative scientific knowledge base.  Instead, what we get is conflicting 

findings in any given literature because researchers have not determined empirically that the 
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preconditions for sound scientific knowledge have been satisfied in their experiments.  The 

MTMM technique and its extensions provide a means of remedying this situation. 

Lee’s (1992) investigation of the relationship between operator trust, self confidence, and 

the use of automation is one of the very few applications of MTMM in the human factors 

literature.  As such, it can be used to illustrate the value of conceptually and empirically 

distinguishing between constructs and methods of measurement.  In Lee’s study, there were two 

constructs of interest, the operators’ trust in the automation’s ability to control a process and the 

operators’ self confidence in their own ability to control a process.  There were also two methods 

of measurement, ratings on a subjective scale and the frequency of operators’ monitoring 

behaviour.  Such a design allows us to construct the matrix shown in Table 1.  Note that Lee did 

not present the same conditions more than once, so it is not possible to assess the reliability 

values along the diagonal of Table 1.   

Table 1:  A multitrait-multimethod matrix relating trust and self confidence measured by 
subjective scales and frequency of monitoring behaviour for Lee’s (1992) study.  A + indicates 
that a high correlation is expected in that cell (a sign of convergent validity).  An X indicates that 
a very low correlation is expected in that cell (a sign of divergent validity).  SS is an abbreviation 
for ‘subjective scales’, and MB is an abbreviation for ‘monitoring behaviour’. 

  Trust Self-confidence 
  SS MB SS MB 

SS     Trust MB +    
SS X X   Self-

confidence MB X X +  

Nevertheless, it is possible to use MTMM to assess discriminant and convergent validity.  

Convergent validity is exhibited if different methods lead to similar results for the same construct 

under comparable conditions.  There are two cells in Table 1 that are relevant to assessing this 

criterion.  The first is the cell in the second row and first column of Table 1.  We should expect 

to see a high correlation value in this cell (indicated by a ‘+’) because trust measured by 

monitoring behaviour should lead to results that are comparable to those obtained by measuring 

trust with a subjective scale.  The second relevant cell is in the fourth row and third column of 

Table 1.  We should expect to see a high correlation value in this cell as well because self 

confidence measured by monitoring behaviour should lead to results that are comparable to those 

obtained by measuring self confidence with a subjective scale. 
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Divergent validity is exhibited if the same or different methods lead to different results for 

different constructs under comparable conditions.  The remaining four cells in the bottom left 

corner of Table 1 are relevant to assessing this criterion.  We should expect to see very low 

correlation values (indicated by a X) in these cells.  For example, ratings of self confidence on a 

subjective scale and ratings of trust on a subjective scale should not be correlated because they 

are measuring different constructs.  If the data turn out to be correlated, then we can infer that 

methods variance is at play (i.e., that the results are determined more by the fact that a subjective 

rating scale is being used as a method of measurement than by the constructs that are of real 

interest). 

Table 2 shows the results that Lee (1992) obtained using the MTMM technique.  A cursory 

examination of the results shows that the criteria of discriminant and convergent validity were 

not consistently met in this study.  For example, the highest correlation in Table 2, 0.42, is that 

between two different constructs (trust and self confidence) when they were measured with a 

common method (subjective scales).  We would expect to see a low correlation here because 

different constructs should lead to different results.  The fact that there is a correlation suggests 

that methods variance is contaminating the results.  As another example, there is a very low 

correlation, 0.04, between the two methods of measuring self confidence.  We would expect to 

see a high correlation here because different methods for measuring the same construct should 

lead to the same results.  The fact that there is a very low correlation suggests that methods 

variance is again contaminating the results. 

Table 2:  A multitrait-multimethod matrix relating trust and self confidence measured by 
subjective scales and frequency of monitoring behaviour (Lee, 1992).  The values are the means 
of z-transformed correlation coefficients of individual operators.  A + indicates that a high 
correlation was expected in that cell (a sign of convergent validity).  An X indicates that a very 
low correlation was expected in that cell (a sign of divergent validity).  Abbreviations are as in 
Table 1.  

  Trust Self-confidence 
  SS MB SS MB 

SS     Trust MB 0.15 (+)    
SS 0.42 (X) 0.04 (X)   Self-

confidence MB -0.07 (X) -0.08 (X) 0.04 (+)  
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This example provides a concrete illustration of how the MTMM technique can be used to 

evaluate discriminant and convergent validity in human factors research.  Unless these criteria 

are satisfied, the results obtained from any study cannot lead to sound scientific knowledge.  If 

the results obtained by Lee (1992) and those reviewed by Campbell and Fiske (1959) and by 

Hammond et al. (1986) are any indication, then the literature is likely to be full of results that are 

caused by methods variance than by the substantive issues that motivated the research.  The 

MTMM technique provides a means of identifying, and thus beginning to remove, such obstacles 

to scientific progress. 

4.  Reliability and magnitude should be distinguished conceptually and empirically. 

It is a truism in human factors engineering that statistical significance is not the same as 

practical significance.  This truism has a sound basis in statistics.  Statistical significance is a 

measure of reliability, and thus indicates the degree of uncertainty in our results.  In contrast, 

effect size (Abelson, 1995; Cohen, 1988, 1990, 1994; Rosnow & Rosenthal, 1989; Rouanet, 

1996) is a measure of the magnitude of an effect, and thus may indicate the degree of practical 

importance of our results.  Note that these two concepts are, in principle at least, orthogonal to 

each other.  As Rosnow and Rosenthal (1989) have pointed out: “it is very important to realize 

that the effect size tells us something very different from the p level.  A result that is statistically 

significant is not necessarily practically significant as judged by the magnitude of the effect” (p. 

1279).  Thus, statistical significance and effect size are both important because they provide 

complementary information about reliability and magnitude, respectively.   

However, in an applied science like human factors engineering, effect size plays a 

particularly important role.  As Chow (1996) has observed: “a significant result may be a trivial 

one in practical terms.  Alternatively, an important real-life effect may be ignored simply 

because it does not reach the arbitrary chosen level of statistical significance” (p. 8).  Despite this 

truism, even just a cursory examination of the human factors literature reveals that statistical 

significance is reported far more frequently than is effect size.  Once again, we believe that this 

is indicative of an over-reliance on NHST and ANOVA.  Neither of these statistical techniques 

provides direct measures of effect size.  Instead, their focus is on reliability. 

Because of the foundational importance of practical significance to human factors 

engineering, it is important that we calculate effect sizes in addition to assessing statistical 

reliability.  Several ways of calculating effect size have been proposed in the literature.  For 
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example, Cohen (1988) has proposed the standardised mean difference statistic, d, as a 

generalisable measure of effect size.  Based on the results that are typically found in behavioural 

research, Cohen has suggested that d = 0.2 is indicative of a small effect, d = 0.5 is indicative of 

a medium sized effect, and that d = 0.8 is indicative of a large effect.  These nominal values 

provide a starting point for evaluating the practical significance of research results. 

Like the other points made earlier, the distinction between reliability and magnitude of an 

effect is best conveyed by an example (adapted from Rosnow & Rosenthal, 1989).  Consider two 

hypothetical experiments, both conducted to evaluate the impact of two types of training 

programs, T1 and T2, on human performance.  In one experiment (with n = 80), T1 is found to 

lead to significantly better performance than T2 (t78 = 2.21, p < 0.05).  In another experiment 

(with n = 20), no significant difference between T1 and T2 is observed (t18 = 1.06, p >0.30).  By 

relying solely on NHST, we might be tempted to conclude that the second experiment failed to 

replicate the results of the first.  Such a conclusion would cast doubt on the true value of T1 on 

human performance. 

Calculating effect size adds new information that can help put the results in a more realistic 

light.  In our hypothetical example, the magnitude of the effect is actually the same for both 

experiments (d = 0.50), despite the fact that the p values for the two experiments differed 

considerably.  How is this possible?  Because the second experiment had a smaller sample size, 

the power to reject the null hypothesis at α = 0.05 was very low, only 0.18.  In contrast, the first 

experiment had a much larger sample size, and thus its power was 0.6 — over three times greater 

than that in the second experiment.  These results clearly show the difference between reliability 

(indicated by statistical significance) and magnitude (indicated by effect size), and thus, why it is 

important to calculate effect size. 

Rouanet (1996) has proposed a set of Bayesian statistics that extend the usefulness of 

effect sizes.  Rouanet’s technique allows us to make inferences about how large or how small an 

effect is in a population.  In the following section, we provide an example of how this analysis 

technique can be used to assess the practical significance of human factors research. 

In summary, the emphasis on NHST and ANOVA has led to an emphasis on statistical 

reliability to the detriment of an emphasis on effect magnitude.  Cohen’s (1988) d and Rouanet’s 

(1996) Bayesian extensions of this statistic provide rigorous and systematic ways of calculating 
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effect size, thereby allowing human factors researchers to assess the practical significance of 

their findings.   

5.  The null hypothesis is never true. 

In addition to the points discussed so far, there is another reason for not putting too much 

emphasis in the results produced by NHST and ANOVA.  As odd as it may sound, there are very 

good reasons to argue that the null hypothesis is never really true in behavioural research.  This 

point has been made by many noted researchers (Abelson, 1995; Cohen, 1990, 1994; Loftus, 

1991, in press; Meehl, 1967, 1978, 1990, 1997; Steiger & Fouladi, 1997), but as with the other 

points we have discussed, its implications have not been taken as seriously as they should be. 

Consider a typical human factors experiment comparing the effect of two treatments (e.g., 

two interfaces, two training programs, or two selection criteria) on human performance.  One 

group of subjects is given Treatment X whereas another is given Treatment Y.  The null 

hypothesis in such a study is that there is no difference whatsoever between the population 

means for the two treatment groups.  Can we really consider such a hypothesis seriously?  For 

example, can we realistically expect that the effects of two different interfaces are exactly the 

same to an infinite number of decimal points?  Meehl (1967) was perhaps the first to point out 

that the answers to questions such as this one are sure to be “no”: 

Considering ... that everything in the brain is connected with everything else, and 
that there exist several ‘general state-variables’ (such as arousal, attention, anxiety 
and the like) which are known to be at least slightly influenceable by practically 
any kind of stimulus input, it is highly unlikely that any psychologically 
discriminable situation which we apply to an experimental subject would exert 
literally zero effect on any aspect of performance. (Meehl, 1967, p. 162) 

As we mentioned earlier, Meehl is not alone in his opinion.  Many other noted researchers have 

voiced the same criticism. 

One way to illustrate the unrealistic nature of the null hypothesis is to consider the insight 

that is gained by using NHST with very large sample sizes.  Meehl (1990) describes a data set 

obtained by administering a questionnaire to 57,000 high school seniors.  These data were 

analysed in various ways using χ2 tables, with each analysis looking at the interaction between 

various categorical factors.   In each case, the null hypothesis was that there was no interaction 

between the categories being compared.  A total of 105 analyses were conducted.  Each analysis 

led to statistically significant results, and 96% of the analyses were significant at p < 0.000001.  
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As Meehl observed, some of the statistically significant relationships are easy to explain 

theoretically, some are more difficult, and others are completely baffling.  To take another 

example, if we have a sample size of 14,000, then a correlation of 0.0278 is statistically 

significant at p < 0.001 (Cohen, 1990).  Figures such as these show that the scientific knowledge 

that is gained solely by refuting the null hypothesis is minimal, at best. 

If the null hypothesis is always false, then the act of conducting a NHST means something 

very different than what we usually think it means.  Rather than being a generator of scientific 

insight, the NHST instead becomes an indirect indicator of statistical power.  For example, if a 

data set does not yield results that are significant at p < 0.05, then the likely interpretation is not 

that the alternative hypothesis is incorrect, but that the sample size of the experiment was too low 

to obtain an acceptable level of power.  After all, as the Meehl (1990) and Cohen (1990) 

examples show, if we have the fortitude and resources to include enough subjects in our 

experiments, then virtually any null hypothesis can be rejected.  Thus, the value of just 

conducting a NHST is minimal.  As Cohen (1994) has pointed out, “if all we ... learn from a 

research is that A is larger than B (p < .01), we have not learned very much.  And this is typically 

all we learn” (p. 1001). 

If we accept the fact that the null hypothesis is never true in behavioural research, what are 

the implications for the statistical analysis of data?  The short answer to this question is that it 

would be useful to have other data analysis techniques that offer more insights than a NHST or 

ANOVA alone.  Two related techniques have frequently been suggested to fulfil this role, power 

analysis and confidence intervals (Abelson, 1995; Cohen, 1990, 1994; Loftus, 1993b, 1995, in 

press; Loftus & Masson, 1994; Meehl, 1997; Steiger & Fouladi, 1997). 

Rather than using the results of a NHST as a surrogate measure of statistical power, 

researchers would be better off if they calculated power directly.  The resulting measure provides 

an explicit indication of the sensitivity of an experiment to detect an effect of interest.  The 

calculation of power is especially valuable in cases where the failure to reject the null hypothesis 

is used as evidence to falsify a particular theory.  In these situations, it is essential that statistical 

power be calculated.  After all, the failure to reject the null hypothesis could simply be caused by 

the fact that too small a sample size was used to detect the effect of interest.  Therefore, to keep 

researchers from “falsifying” theories simply by not including enough subjects in their 
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experiment, it would be useful to present calculations of power.  Doing so would provide 

additional information than that obtained just by conducting a NHST or ANOVA. 

 Confidence intervals provide another data analysis technique that can be used to obtain 

greater insight into experimental results.  Whereas the results of a NHST merely show the 

probability that the data could have arisen given that the null hypothesis were true, confidence 

intervals directly provide information about a pattern of population parameters.  As such, they 

have several advantages over NHST.  First, confidence intervals provide a graphical 

representation of results rather than an alphanumeric representation (see the example, below).  

This format makes it easier for researchers to extract information from their data analysis.  

Second, the width of a confidence interval provides an indication of the precision of 

measurement (or power).  Wide confidence intervals indicate imprecise knowledge, whereas 

narrow confidence intervals indicate precise knowledge.  This information is not provided by the 

p value given by a NHST.  Third, the relative position of two or more confidence intervals can 

provide information about the relationships across a set of group means.  If two confidence 

intervals do not overlap, then the means are significantly different from each other, otherwise 

they are not.  Finally, confidence intervals also provide the same information that is usually 

obtained from a NHST.  If the confidence interval includes the value zero, then the NHST is not 

significant, otherwise it is.  Therefore, the plotting of confidence intervals provides researchers 

with more insights into their data than could be obtained by NHST alone. 

The informativeness of confidence intervals can be illustrated with a simple example 

borrowed from Steiger and Fouladi (1997).  Figure 3 shows confidence intervals for the 

differences between means from three hypothetical experiments.  Each experiment was 

performed in the same domain and using measures with approximately the same amount of 

variability.  Note that the confidence intervals from Experiments 1 and 3 do not include zero.  In 

these two cases, a NHST would indicate that the difference in means is reliably different from 

zero, leading to a statistically significant decision to reject the null hypothesis.  In Experiment 2, 

the confidence interval does include zero.  Thus, in this case, a NHST would indicate that the 

difference in means is not reliably different from zero.  Thus, the confidence intervals Figure 3 

provides the information that can be obtained directly from a NHST with the difference that that 

information is presented graphically.   
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Figure 3:  Hypothetical example showing how confidence intervals reflect different degrees of 
measurement precision (adapted from Steiger & Fouladi, 1997). 

However, additional information not directly available from a NHST can also be obtained 

from confidence intervals.  For example, based on the results presented above, the NHST might 

lead us to believe that the results from Experiment 2 do not agree with those from the other two 

experiments.  The confidence intervals provide a graphical basis for reaching a very different 

interpretation.  Experiment 1 had a very large sample size and a very high level of precision, 

resulting in a very narrow confidence interval band.  However, precision should not be confused 

with magnitude.  Figure 3 clearly shows that the effect size in Experiment 1 is comparatively 

very small.  The only reason why the null hypothesis was rejected was because the measurement 

precision was so great.  Thus, the results from Experiment 1 are precise but small in magnitude.   

In contrast, Experiment 2 has a very wide confidence interval band which indicates poor 

measurement precision.  However, it could very well be that the magnitude of the difference in 

means in Experiment 2 is larger than that in Experiment 1, but that the measurement precision 

was just inadequate to detect that effect.  Thus, the results from Experiment 2 are imprecise, and 

thus we do not know with any certainty if they are large or small in magnitude. 

Finally, Experiment 3 also has a relatively wide confidence interval band indicating poor 

measurement precision.  Nevertheless, this confidence interval does not overlap with that from 

Experiment 1, which indicates that the magnitude of the difference in means in Experiment 3 is 
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greater than that in Experiment 1.  Thus, the results from Experiment 3 are comparatively 

imprecise but larger in magnitude. 

The important point to take away from the hypothetical example in Figure 3 is that 

confidence intervals provide much more information than do NHSTs.  Furthermore, that 

information is provided in a graphical format, thereby making it easier for researchers to pick up 

meaningful patterns perceptually (e.g., width of bands, overlap across bands, inclusion of the 

zero point).  In this hypothetical example, the added information lead to a very different 

interpretation than would have been obtained by reliance on NHST alone. 

In summary, power analysis and confidence intervals are rarely-used but very valuable 

statistical analysis techniques.  Together, they allow us to gain richer insights into our data, and 

thereby allow us to go beyond merely rejecting the null hypothesis. Note that confidence 

intervals can be calculated for effect sizes as well, thereby combining several of  the advantages 

of each of these techniques into one statistical procedure (Cohen, 1990, 1994; Rosnow & 

Rosenthal, 1989).  In this way, we would obtain information about the reliability of our 

knowledge of effect size, information that is surely to be of practical value in human factors 

research. 

6.  One experiment is always inconclusive. 

This final point is deeper than the others in that it cuts across the comparative advantages 

and disadvantages of any particular set of statistical analysis techniques.  No matter how 

carefully it is designed, not matter how sophisticated the equipment, and no matter what 

statistical analysis techniques are used, any one experiment can never provide definitive results.  

The origin of this limitation is a logical one.  Empirical research relies on inductive inference, 

and as any philosopher or logician knows, induction provides no guarantees.   

The same conclusion can be obtained from the history of science.  To take but one 

example, several times experimental results were obtained that supposedly falsified Einstein’s 

special theory of relativity (Holton, 1988).  Each time, subsequent research revealed that it was 

the experiments and not the theory that were at fault.  The important point, however, is that this 

conclusion was not apparent at the time that the results were generated.  For example, ten years 

passed before researchers identified the inadequacies of the equipment used in one of the 

experiments that had supposedly falsified special relativity.  By implication, when an anomalous 

result is first obtained, only additional research can determine how best to interpret the result.  In 
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Einstein’s own words: “whether there is an unsuspected systematic error or whether the 

foundations of relativity theory do not correspond with the facts one will be able to decide with 

certainty only if a great variety of observational material is at hand” (cited in Holton, 1988, p. 

253).  In short, there is no such thing as a “critical experiment” because empirical knowledge is 

inductive, and thus, fragile when viewed in isolation.  Like the other points that we reviewed 

above, this insight is far from new but it too has not been given the attention that it deserves. 

As several authors have pointed out (Cohen, 1990; Dar, 1987; Rosnow & Rosenthal, 1989; 

Rossi, 1997; Schmidt & Hunter, 1997), the way in which NHST and NOVA are used in practice 

tends to cause researchers to overlook this epistemological limitation.  In the extreme, the 

attitude is: “if a statistical test is significant at p < 0.05, then the research hypothesis is true, 

otherwise it is not”.   If valid, such an inferential structure would make life easier for researchers.  

Unfortunately, what NHST really evaluates is the probability that the data could have arisen 

given that the null hypothesis were true, not the probability that the null hypothesis is true given 

the data that were obtained (Cohen, 1994).  Although both of these quantities are conditional 

probabilities, they are logically very different from each other.  NHST only allows us to make 

inferences of the first kind.  Therefore, “significance tests cannot separate real findings from 

chance findings in research studies” (Schmidt & Hunter, 1997, p. 39). 

Researchers frequently ignore the fact that there is no objective, mechanical procedure for 

making a dichotomous decision to evaluate the validity of research findings.  This attitude can 

unwittingly have a devastating effect on a body of literature.  A case study described by Rossi 

(1997) provides an incisive, if somewhat depressing, example.  He reviewed the literature on a 

psychological phenomenon known as “spontaneous recovery of verbal associations”.  During the 

most intensive period of investigation (1948-1969), about 40 papers were published on this topic.  

However, only about half of these studies led to a statistically significant effect of spontaneous 

recovery.  Consequently, most textbooks and literature reviews concluded that the data were 

equivocal, and thus, that the empirical evidence for spontaneous recovery was unconvincing.  

Eventually, the collective wisdom became that spontaneous recovery was an ephemeral 

phenomenon, and as a result, research in the area was pretty much abandoned.   

Rossi (1997) conducted a retrospective analysis of the collective findings in this body of 

literature.  Data from a total of 47 experiments with an aggregate of 4,926 subjects were included 

in the analysis.  Of these studies, only 43% reported statistically significant results at p < 0.05.  It 
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is this low percentage of significant results which led researchers to doubt the existence of the 

spontaneous recovery effect.  However, when the experiments were analysed as a whole, there 

was very reliable evidence in support of the spontaneous recovery effect (p < 0.001).  Rossi also 

conducted an effect size analysis and a power size analysis across these studies.  The results 

indicate that the average effect size was relatively small (d = 0.39) and that the average power 

was quite low (0.38).  Together, these results help explain why the significant effects were in the 

minority.  Because researchers were dealing with a small effect and their studies had low power, 

many experiments failed to detect a statistically significant effect. 

Together, these facts add up to a fascinating illustration of how naive attitudes about both 

statistical tests and the value of replication can have a deep impact on a body of literature.  As 

Rossi (1997) pointed out, researchers did not report any effect sizes so they did not know that 

they were dealing with a small effect.  Similarly, no study reported power, so researchers were 

not aware that their experiments had low power.  With this veil of ignorance as background, 

researchers (incorrectly) interpreted the results from each experiment using a dichotomous 

decision criterion: if p < 0.05, then the result is valid, otherwise it is not.  But as Rosnow and 

Rosenthal (1989) have observed, “dichotomous significance testing has no ontological basis .... 

surely, God loves the .06 nearly as much as the .05” (p. 1277).  Because of the combination of 

small effect and low power, 57% of the experiments did not generate results that passed the 

naive dichotomous decision criterion.  This, combined with a lack of appreciation for the 

importance of replication across studies, led researchers to abandon what turned out to be a 

legitimate, albeit small, psychological effect. 

What can we conclude from the spontaneous recovery case study?  First, the case shows, 

once again, the value of calculating effect size and power so that researchers can better interpret 

their results.  Second, the case also illustrates how misleading and unproductive it is to use the p 

< 0.05 criterion (or any other dichotomous decision rule) as the gatekeeper of scientifically 

acceptable knowledge.  As Rossi (1997) pointed out, “the inconsistency among spontaneous 

recovery studies may have been due to the emphasis reviewers and researchers placed on the 

level of significance attained by individual studies .... A cumulative science will be difficult to 

achieve if only some studies are counted as providing evidence” (p. 183).  Third, and relatedly, 

the spontaneous recovery case study also brings home the importance of replication across 

multiple studies.  It is the pattern of results across studies that is most important to building 
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scientific knowledge.  In the words of Abelson (1995), “Research conclusions arise not from 

single studies alone, but from cumulative replication” (p. 77).  Even if no single result reaches 

statistical significance at the p < 0.05 value, the entire pattern of results can be highly reliable 

when viewed as a whole.  The converse point is equally valid: “A successful piece of research 

doesn’t conclusively settle an issue, it just makes some theoretical proposition to some degree 

more likely.  Only successful future replication in the same and different settings ... provides an 

approach to settling the issue” (Cohen, 1990, p. 1311).   

How many other cases like the one reviewed by Rossi (1997) are there in the literature?  It 

is very difficult to answer this question.  Nevertheless, there is one thing that we can be sure of.  

Making decisions on a dichotomous basis using NHST will only make it more likely for such 

problems to plague the literature.  It is for this reason that an increasing number of noted 

researchers have felt the need to point to the importance of replication to building sound, 

cumulative knowledge (e.g., Meehl, 1997; Rosnow & Rosenthal, 1989; Schmidt & Hunter, 

1997).  This lesson is perhaps the most important one of all among the ones that we have 

reviewed. 

APPLICATION TO PREVIOUS JAERI EXPERIMENTS 

Introduction 

In this section, we will apply some of the statistical analysis techniques identified in the 

previous section to data from previous experiments conducted for JAERI.  We will begin by 

introducing the techniques that we have chosen to apply, and will then outline the theory behind 

each technique and a methodology for applying them to the JAERI dataset.  Results will be 

presented and discussed, and conclusions both about the research programme as a whole and 

about the usefulness of these novel methods will be made.  

Techniques Applied 

Several lesser known statistical methods were introduced in our literature review.  These 

methods were: (1) individual subjects analyses using non-parametric statistics (Hammond et al., 

1987; Vicente, 1992), (2) Campbell & Fiske’s (1959) Multitrait-Multimethod matrix and 

extensions of this technique (Hammond et al., 1986), (3) confidence intervals (Loftus, 1993b; 

Loftus & Masson, 1994), (4) power analysis (Cohen, 1988; Kirk, 1995; Pearson & Hartley, 

1951), (5) effect size evaluation (Cohen, 1994), and (6) the use of Bayesian methods to assert 

largeness or smallness of effects (Rouanet, 1996).  In this section, we will apply three of these 
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techniques (confidence interval estimation, power analysis, and Bayesian methods to assert 

largeness or smallness of effects) to the JAERI dataset.  Since one dataset cannot possibly afford 

the full range of statistical techniques presented, these techniques were chosen for the sole reason 

that they are well suited to our data.  This is not to say that the other techniques are not useful to 

this programme of research, but rather that their usefulness is promissory.  

Confidence Intervals and Graphical Analyses of Variance 

As already discussed, Loftus (1993b) and Loftus and Masson (1994) have written about the 

drawbacks of traditional NHST and promote the practice of confidence interval (CI) estimation 

to overcome many of these drawbacks and to aid in data description.  To review, while NHST 

techniques output a probability that some set of population means is not equal to some other set, 

they provide no direct information about the power of this conclusion, the actual relationship 

between the means, or the size of effects.  CI estimation, on the other hand, provides a richer set 

of information.  CIs are able to portray a standard NHST graphically, while also providing 

information to allow an experimenter to intuitively assess the relationship between the means, 

the power of the conclusion, and the size of effects. 

While Loftus and Masson (1994) describe CI estimation for both between- and within-

subject experiments, since the JAERI experiments primarily involved between-subjects designs, 

only these techniques will be covered here.  The reader is referred to Loftus and Masson (1994) 

for a discussion of extensions of these techniques to within-subjects designs. 

Most standard introductory statistical textbooks cover the topic of CI estimation (though, 

as Loftus and Masson (1994) observe, the importance of this technique is not stressed).   A 

standard CI about the mean for the case in which the means and standard deviations are not 

known, but in which the sampling distribution of the means can reasonably be assumed to be 

normal, is based on the t distribution1.  Given a type I error probability of α, a two-sided 1-α CI 

is given by: 

 








+<<−
n

t
X

n
t

X vv σ
µ

σ αα ˆˆ ,2/,2/  (1) 

where 

 X is an estimate of the population mean, 

                                                 
1 For an extended discussion of simple CI estimation, see Hines & Montgomery (1990). 



Research on the Characteristics of Long-Term Adaptation (II) 

 

25

 $σ  is an estimate of the population standard deviation, 

 n is the sample size, and  

 v is the error degrees of freedom, which in this simple case is equal to n - 1. 

Loftus and Masson (1994) have extended this procedure to use information contained in 

any standard ANOVA table. Since the expected value of the mean squared error, E(MSE), is the 

population standard deviation, σε
2 , Equation 1 can be rewritten as: 

 








+<<− n
MStXn

MStX ε
ϕα

ε
ϕα µ ,2/,2/  (2) 

where 

 X  and n are the same as in equation 1, and 

 ϕ  is the error degrees of freedom, from the ANOVA table. 

Or, in a more tractable format: 

 ϕα
ε

,2/tn
MSMCI j 








±=  (3) 

Using this formula, CIs for all of the j groups included in an experimental design can be 

calculated and compared against one another.  Standard hypothesis testing can be done by 

comparing the CIs of the different experimental groups.  If the CIs from two groups do not 

overlap, the null hypothesis that the two means are equal is rejected; conversely, if the CIs do 

overlap, then we fail to reject the null hypothesis.  While this procedure does not output a 

quantitative p value, Loftus and Masson (1994) and the authors do not view this as a drawback.  

Rather, one of the real advantages of using CIs to test hypotheses (in other words, a graphical 

ANOVA) is that it takes the focus away from arbitrary p-values and places the focus on the 

pattern of means and the variability in the data.  The use of CIs helps to shift the product of data 

analysis from parametrization (lists of p-values) to description (an intuitive understanding of the 

variability in the data set and of the relationships between the sets of means). 

Power Analysis 

Power analysis is the formal determination of the sensitivity of a statistical test (and by 

implication, of an experiment) to detect differences in a set of dependent variables based on the 

manipulation of one or more independent variables.  Although theoretically quite a complex 
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procedure,2 the actual application and interpretation of power analysis for most ANOVA designs 

is quite simple. 

In most applications of ANOVA, researchers tend to be most concerned with ensuring that 

they do not commit the error of rejecting the null hypothesis if it is, in fact, true.  This is a Type I 

error, and the probability of it occurring is explicitly set at α (the significance level of the test).  

In many situations α is set at .05 or less as Type I errors are viewed as especially grave.  Type II 

errors are committed when there is a failure to reject the null hypothesis when it is, in fact, false.  

The probability of a Type II error, β, cannot be set to a certain value by the experimenter in the 

same way as α can be, but rather is a function of both the sample size and the population effect 

size.  Strictly speaking, β can only be determined after an experiment has been performed and an 

estimate of the population effect size is known. 

The power of a test is equal to 1 - β, and is the probability that a false null hypothesis is 

correctly rejected.  While no strict guidelines exist for how large the power of the test should be 

(perhaps because few tests achieve even moderate power), it is generally acknowledged that a 

power of greater than .8 is desirable for an experimental test (Cohen, 1988).  The power of an 

ANOVA can be determined by first calculating the value of φ: 
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εσ
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φ

∑
==  (4) 

where: 

 jα is the size of treatment effect j, 

 p is the number of treatments, 

 2
εσ is the standard deviation of error effects, and 

 n is the sample size. 

To simplify calculations, 
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2 For an excellent treatment of power analysis, see Cohen (1988). 
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Once φ has been calculated it can be compared to charts of the power function for ANOVA (see 

Kirk, 1995; Pearson & Hartley, 1951), which are based on four parameters: 1ν , 2ν , the chosen 

significance level α, and φ, where 11 −= pν  and )1(2 −= npν .  To use these charts, the chart 

for the appropriate 1ν  is located, on which power can be determined for a given φ, 2ν , and α 

(generally either .05 or .01). 

Two issues should be noted.  First of all, power cannot be calculated for cases in which 

EffectError MSMS > , that is where F < 1.  These cases will result in a negative value for p
p

j
j∑

=1

2α , 

and will make φ undefined.  Power is very low in these cases (less than 0.30).  Second, and more 

importantly, the method outlined above is used to calculate power post-hoc and so outputs the 

power of the experiment given the data observed.  If power is defined as the ability of an 

experiment to detect effects, then highly significant effects imply high power.  If significant 

effects were not observed, power will generally be low.  This can be better understood by 

looking at the formula for φ.  As the difference between MSeffect and MSerror grows in favour of 

MSeffect, both F and p
p

j
j∑

=1

2α  will become large.  All things being equal, as F increases, p 

decreases, and as p
p

j
j∑

=1

2α  increases, power increases (see equation 4). 

Bayesian Methods to Assert Largeness or Smallness 

Of the three types of analyses presented in this section, the Bayesian methods that follow 

will be the most unfamiliar to many readers.  This is because Bayesian techniques differ greatly 

from typical ANOVA analyses.  While ANOVA techniques ask the oblique question, “could the 

observed set of data have occurred if the null hypothesis is true?”, Bayesian techniques allow one 

to ask the more direct question, “what is the probability that this hypothesis is true?”  In spite of 

this direct approach to statistical inference, the reason that some practitioners have been hesitant 

to adopt Bayesian techniques is that they generally require one to first make an estimate of the 

probability that the hypothesis is true (the prior probability) in order to come up with a refined 

estimate of how much belief to put in the hypothesis in light of the data (the posterior 

probability).  Stating a prior probability before carrying out an investigation is seen by some as 

unobjective and unscientific. 
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In light of this criticism, Rouanet (1996) has presented a technique that is important in two 

aspects.  First of all, it makes the problem of specifying a prior probability moot, as it uses a 

prior that expresses ignorance about the parameters of interest.  In this way, the posterior 

expresses only evidence from the data and is not coloured by the experimenters own prior 

beliefs.  Second, the purpose of this method is not to test standard null hypotheses about the 

presence of an effect, but rather to test hypotheses about the size of the observed effect.  It allows 

the calculation of both observed effect sizes and confidence intervals about these observations.  

This is useful for a number of reasons.  First of all, observed effect sizes are independent of 

statistical significance.  In experiments that may not achieve statistical significance, Bayesian 

methods still allow us to make strong assertions about how large (or small) an effect could 

reasonably be.  Second, the investigation of effect sizes can be very helpful in describing the 

observed data.  Effect sizes can help in understanding the central tendency in the data while a 

confidence interval about the effect size can help in understanding the degree of belief that can 

be placed in this point estimate. 

A method of assessing largeness or smallness of effect size is described below.  This 

discussion closely follows that of Rouanet (1996), to which the reader is referred for a more 

complete development. 

Effect sizes.  Consider an investigation where n subjects undergo two treatments, each 

resulting in some score.  If di is the difference between the two scores for subject i, then the mean 

difference is dn
dn

i

i =∑
=1

, and will be referred to as d from now on.  d is an estimator of δ, the 

actual population effect.  Similarly, ∑
= −

−
=

n

i

i

n
dds

1

2
2

)1(
)(  is an unbiased estimator of σ2 (with 

1−= nq df), the variance of individual effects in the population.  Having established these 

conventions, we will from now on refer to the standardised effect, sd /  (see Cohen, 1988).  By 

convention, 5./ ≅sd  is considered a medium-sized effect, 4./ <sd  is considered a small 

effect, and 6./ >sd  is considered a large effect.  While these values are only rules of thumb, 

they do specify a benchmark for a starting point. 

Assumptions.  Now assume that the di’s are independent and normally distributed, 

),( 2σδN .  Then the sampling distribution of the mean d is ( )nN 2,σδ .  To test the null 
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hypothesis 0:0 =δH , the usual test statistic is )/( sdnt = , which under H0 is distributed as an 

elementary t with q = n – 1 df. 

Prior distribution.  At this point, Bayesian elements are introduced into the analysis.  The 

typical Bayesian approach is to postulate some prior distribution that expresses one’s certainty 

about the parameters of interest independently of the data at hand, and to combine this prior with 

the sampling distribution to yield a posterior distribution that expresses uncertainty about the 

parameters conditional on the new data.  Instead of expressing any certainty about the parameters 

in the prior, Rouanet (1996) advocates the use of a noninformative prior that expresses a state of 

ignorance about the parameters.  In this way, the posterior will express only the evidence brought 

by the data. 

Posterior distribution.  Assuming this noninformative prior on ( )σδ ,  and given d = dobs 

(the observed value of d) and s = sobs (the observed value of s), the posterior distribution of δ is 

such that obsobs sdn /)( −δ  is distributed as an elementary t variable.  The distribution of δ is 

then a scaled t with mean d and scale parameter nsobs /2 , or in more formal notation,  

 







n

sdt obs
obsq

2

,~δ . (6) 

Of import for drawing inferences about effect sizes is the connection between the sampling 

and posterior distributions, which can be seen by scaling both dobs and δ by sobs.  If we let 

obssd )/(  denote the observed standardised effect, obsobs sd /  then the posterior distribution 

]/1,)/[(~/ nsdts obsqobsδ  can be found by shifting the sampling distribution under H0 by 

obssd )/( . 

Methodology.  To use the above development to draw inferences about effect sizes, the 

observed effect is taken as an estimate of the population effect, and the approach outlined 

constructs a distribution around this estimate.  In effect, this type of inference attempts to 

understand what a population that has produced the observed effect might look like.  The 

conclusions that can be drawn from a posterior distribution supplement the descriptive 

conclusions that can be made from effect sizes.  If most of the posterior distribution lies in the 

area of large effects, then there is a great probability that the effect is indeed large.  On the other 
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hand, if most of the posterior distribution lies in the area of small effects, there3is a great 

probability that the effect is small.  So, using this method, assertions can be made about the 

largeness or smallness of an effect. 

Examples.  Rouanet (1996) presented two examples which are helpful to reproduce here.  

These examples have been fleshed out somewhat to better describe the calculations involved.  

Both of these examples involve four parameters:  (1) a credibility level γ ( > 0.5) which expresses 

the level of certainty than any assertion will have to have, (2) a limit for largeness, llar or limit for 

smallness, lsma, which express how large or how small an effect must be to count as either large 

or small, respectively, (3) obssd )/( , the observed effect size, and (4) the sample size, n. 

In the first example, consider an experiment where obssd )/( = 0.9 with n = 25.  The posterior 

distribution is then ),9.0(~/ 25
1

24tsobsδ .  To see whether or not largeness can be asserted in this 

case, we set the credibility level, γ, at 0.9, and the limit for largeness, llar, at 0.6, and then attempt 

to determine if γδ >> )/( larobs lsP .  To do this, the posterior distribution must be shifted to the 

elementary t distribution3:  

 )/( larobs lsP >δ  = 






 −
>

t

t
q

xtP
σ
µ  (7) 

where: 

 x = llar, 

 µt = obssd )/( , and 

 
nt

1=σ . 

Then, 

 )6.0/( >obssP δ  = 






 −
>

51
9.06.0

24tP  

  = )5.1( 24 −>tP  

  = 0.927. 

Since )6.0/( >obssP δ  = 0.927 > 0.9, we can assert largeness in this case. 

                                                 
3 For more information on the mechanics of shifting a t-distribution, see Phillips (1973). 
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As a second example, consider an experiment where obssd )/( = 0.1 with n = 25.  The 

posterior distribution is then ),1.0(~/ 25
1

24tsobsδ .  To see whether or not smallness can be 

asserted in this case, we set the credibility level, γ, at 0.9, and the limit for smallness, lsma, at 0.4, 

and then attempt to determine if γδ >< )/( larobs lsP .  To do this, we again shift the posterior 

distribution to the elementary t: 

 )4.0/( <obssP δ  = 





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<

t

t
q

xtP
σ
µ  

  = 






 −
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51
1.04.0

24tP  

  = )5.1( 24 <tP  

  = 0.927. 

Since )4.0/( <obssP δ  = 0.927 > 0.9, we can assert smallness in this case. 

Extensions to ANOVA.  These procedures can easily be extended to complement the 

inferences made using an ANOVA.  While Rouanet (1996) has extended these procedures to 

include all ANOVA inferences, inferences on effects with 1 df are treated differently than those 

with df  > 1.  Only inferences for 1 df will be treated in this paper as we were not able to obtain 

the software necessary to perform the multi-df analyses.   

The posterior distribution used to make inferences on 1 df ANOVA effects is similar to that 

presented earlier: 

 
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As a result, Bayesian inference for any 1 df source of variation involves only the t 

distribution.  Since 1 df sources of variation are so common in experimental practice, it is 

fortunate that such a straightforward posterior distribution exists.  Calculations for inferences on 

1 df sources of variation are most easily made by reference to data in the ANOVA table.  How 

this is done is best demonstrated by means of an example. 
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Example:  Effect sizes for interface effect in JAERI II4 for diagnosis score.  In the JAERI 

II investigation, fault diagnosis was coded on a scale of 0 to 3 (Pawlak & Vicente, 1996).  

Subjects who did not notice the fault would be assigned a score of 0 for that fault, while those 

who isolated the fault and its root cause would be assigned a 3.  A partial ANOVA table to test 

hypotheses on this measure is reproduced in Table 3. 

Table 3:  Partial ANOVA table for JAERI II diagnosis score. 
Source df SS MS F p 

INT 1 38.128 38.128 15.01 0.0009 
TRAIN 1 0.832 0.832 0.33 0.5734 

INT*TRAIN 1 4.730 4.730 1.86 0.1875 
SUBJECT(INT*TRAIN) 20 50.803 2.540  

To find the effect size for INT, four parameters are needed:  the effect mean square (MSeff), 

the error mean square (MSerr), the number of observations for every level of the effect (neff), and 

the number of subjects per group (nerr).  In this case, MSeff = 38.128, MSerr = 2.540, neff = 129 (the 

number of faults for which we have data per group), and nerr = 12.  Using these data, n̂ , 2
effs , and 

2
errs  can be found, as can obssd |/| : 

 n̂  = erreff nn /  (9) 

 2
effs  = effeff nMS /  (10) 

 2
errs  = errerr nMS /  (11) 

 obssd |/|  = 2

2

err

eff

s
s  (12) 

In this case, 12ˆ =n , 29556.02 =effs , 21167.02 =errs , and 182.1|/| =obssd .  With this 

information, the posterior distribution can be constructed and inferences can be made.  Using the 

form of the posterior distribution in equation 8,  
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4 Familiarity with the JAERI II experiment is not necessary to understand this example.  Readers who are not 
familiar with the programme of experiments carried out for JAERI and are interested in understand the context of 
this example are referred to the section titled Background in which the JAERI II experiment is briefly introduced.  
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where q is equal to the error df from the ANOVA table.  So the posterior distribution for this 

example is: 

 [ ]12
1,182.1~ 20t

sobs

δ . 

Now that the posterior distribution is known, we can proceed as in the previous examples 

to see if largeness can be asserted in this case.  Using llar = 0.6 and 9.0=γ , 

 )6.0/( >obssP δ  = 





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t

t
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20tP  

  = )794.1( 20 −>tP  

  = 0.971. 

Since )6.0/( >obssP δ  = 0.971 > 0.9, we can assert largeness in this case.  Therefore, we can say 

with a relatively high degree of certainty that the effect of interface on diagnosis score in the 

JAERI II experiment was large.  Performing similar calculations for the TRAIN effect, it can be 

found that the posterior distribution for this effect is: 

 [ ]12
1,1746.0~ 20t

sobs

δ . 

Taking lsma = 0.4 and 9.0=γ , 9.0778.0)4.0/( <=<obssP δ .  As this is the case, we cannot 

assert smallness here.  While the p-value from the ANOVA table allows us to conclude little 

more than that the effect is not significant (remember, large p-values do not allow us to conclude 

that no effect exists), this Bayesian procedure allows us to conclude that the true effect is most 

probably not small. 

Bayesian confidence intervals.  Rouanet’s (1996) procedures can be easily extended to a 

graphical presentation in the form of confidence intervals around obssd |/| .  These confidence 

intervals present information about both the magnitude of obssd |/|  and the degree of certainty 

that can be put in this measure.  It should be stressed, however, that the power of an experiment 

cannot be ascertained from CIs around obssd |/|  in the same way that this can be done for CIs 

around means.  The width of a CIs around obssd |/|  is strongly determined by the sample size, 

larger samples resulting in smaller CIs.  The width of a CI around the mean, on the other hand, is 
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strongly determined by both the sample size and the variability in the data – large sample sizes 

and low variability in tandem result in smaller CIs.  Thus, confidence intervals around 

obssd |/| serve only to show boundaries for asserting either largeness or smallness at a given level 

of γ. 

The logic behind constructing a confidence interval around obssd |/|  is straightforward.  

Instead of using the posterior distribution to see if a given effect size can reasonably be called 

either small or large at a level of confidence γ, the posterior distribution is used to infer what the 

upper and lower γ limits are.  So, to find the upper limit of the CI, we need to find for what effect 

size  

 )/( upperobssP βδ >  = γ 

To do this, set: 

 γ = 






 −

n
sd

t obsupper
q /1

)/(β
 

and solve for β: 

 )(1 γ−
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n
sd obsupper

/1
)/(−β

 

 βupper = obs
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n
t

)/(
)(1

+
− γ

. (13) 

While finding the lower limit ( lowerβ )can be done in the same manner, since the t distribution is 

symmetrical, the upper limit can be mirrored to achieve a two-sided )21( γ−  confidence interval 

on the effect size (i.e., if in the above calculations γ were set to .9, this procedure would result in 

an 80% CI around obssd |/| ).  Using the data for the INT effect example presented earlier, with γ 

= 0.9,  

 upperβ  = 118.1
12

)9.0(1
20 +
−t  

 upperβ  = 1.5 

 lowerβ  = upperobssd β−)/(2  

 lowerβ  = .736. 

Similarly, for the train effect, with γ = 0.9,  
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 upperβ  = 1652.0
12

)9.0(1
20 +
−t  

 upperβ = 0.5477 

 lowerβ  = 5477.0)1652.0)(2( −  

 lowerβ  = -0.3304 

Since negative effect sizes are not possible, lowerβ  is set at 0.  With this information, the 

confidence intervals around the effect sizes for both the INT and TRAIN can be plotted (see 

Figure 4).  Notice that assertions about smallness and largeness can be read directly from this 

figure.  Since the confidence interval for the INT effect does not drop below 0.6, we can assert 

with at least a 90% level of confidence that this effect is large.  Similarly, since the confidence 

interval for the TRAIN effect stretches above 0.4, we cannot assert smallness with a 90% level of 

confidence. 
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Figure 4:  80% CIs about effect sizes for JAERI II trial completion time, by effect. 

Results 

Background 

To set the stage for the analyses that follow, we will first summarise the data from the four 

studies that comprise the database for these analyses.  All of these studies have been conducted 

in the context of the DURESS II testbed, a simulation of a highly simplified yet representative 
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thermal hydraulic plant. DURESS II can be controlled using either a conventional interface 

displaying only physical information (P interface) or an interface developed according to the 

principles of EID that displays both physical and functional information (P+F interface). 

Using DURESS II, each experiment was designed to investigate the effects on operator 

adaptation of modifying one or more behaviour shaping constraints.  Generally speaking, 

behaviour shaping constraints are any type of constraint that may shape how operators adapt to a 

work domain.  The specific behaviour shaping constraints relevant to this program of research 

are interface content, interface form, type of training, and pre-existing competencies (Howie, 

Janzen, & Vicente, 1996): 

• Interface Content.  Interface content is a strong constraint on operator performance 

(Christoffersen et al., 1994).  While providing proper and relevant information is a 

necessary (but not sufficient) provision for functional adaptation, either neglecting to 

include critical information or providing irrelevant information can foster dysfunctional 

adaptation. 

• Interface Form.  Independent of the information content of an interface is the form of 

information presentation.  Operators may become increasingly attuned to the visual form 

of an interface, or in other words, the visual form of an interface will manipulate an 

operator’s attention.  An interface that directs an operator’s attention to critical 

information should foster functional adaptation.  Conversely, an interface that directs an 

operator’s attention to either non-critical or irrelevant information may promote 

dysfunctional adaptation. 

• Type of Training.  The type and amount of training that operators receive influences 

adaptation.  Operators can receive training either prior to or concurrent with operating a 

system.  Training provides operators with: (1) a set of competencies tailored to a specific 

work situation, (2) guidance in what types of information to treat as important, and (3) 

experience for dealing with novel situations.  Many types of training exist, and some 

research (e.g. Crossman & Cooke, 1962/1974) indicates that at least some types of 

theoretical training do not foster functional adaptation.  The effect of training based on 

both fundamental physical principles and interface design, however, could foster 

functional adaptation. 



Research on the Characteristics of Long-Term Adaptation (II) 

 

37

• Pre-existing competencies.  The subjects in each experiment have pre-existing 

competencies that influence adaptation.  These take on such forms as cognitive style, 

declarative knowledge, perceptual and motor skills, and population stereotypes.  

Although this set of behaviour shaping constraints cannot be controlled in the same 

fashion as those listed above, an understanding of their effects is important for both 

experimental design and analysis of results. 

Table 4 summarises the manipulations of behaviour shaping constraints across a series of four 

experiments.  The accompanying text describes each of these experiments. 

Table 4:  Integrated summary of the three-year research program, showing the behaviour shaping 
constraints investigated in each experiment.  Adapted from Howie et al. (1996 p. 9). 

Behaviour Shaping Constraints 

Experiment 
Interface 
Content 

Interface 
Form 

Type of 
Training 

Pre-existing 
competencies 

Number of 
Subjects 

JAERI I P vs. P+F P vs. P+F None 6 
JAERI II P vs. P+F P vs. P+F None vs. AH 24 

JAERI IIIa P+F P vs. P+F vs. 
Divided P+F 

None 12* 

JAERI IIIb P+F P+F None vs. 
Dplayer vs. 

Dplayer + SE 

 
Demographic 

Data 
+ 

Cognitive 
Style 

18* 

*  JAERI IIIa and IIIb made use of a shared control group of 6 subjects.  In total, 24 subjects participated in 
JAERI IIIa and IIIb. 

1. JAERI I (Christoffersen et al., 1994): This experiment was designed to assess the impact of 

interface content and form on long-term adaptation.  It involved a longitudinal investigation 

in which six subjects operated either the P or the P+F interface of the DURESS II 

microworld quasi-daily over a period of six months (217 trials). 

2. JAERI II (Hunter, Janzen, & Vicente, 1995): This experiment investigated the interaction 

between interface design and model-based training on adaptation.  Twenty-four subjects 

participated in a 2 x 2 experiment, with two levels of interface design (P vs. P+F) and two 

levels of training (none vs. abstraction hierarchy [AH] training), over a period of one month 

(67 trials). 

3. JAERI IIIa (Howie et al., 1996): This experiment investigated the impact of interface form 

on adaptation.  The P+F interface of DURESS II was compared to a divided P+F interface 

with one level of information for each level of the abstraction hierarchy.  12 subjects, divided 
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into two groups (integrated vs. divided), participated in this experiment for one month (67 

trials) each. 

4. JAERI IIIb (Howie et al., 1996): This experiment investigated the effect of a second type of 

training, self instruction via performance reviews and/or self-explanation, on operator 

performance.  18 subjects were divided into three groups, each of which performed identical 

tasks on the P+F interface while engaging in different levels of performance reviews and/or 

self-explanation.  The first group did not review their performance or engage in any self-

explanation of control actions.  The second group periodically reviewed their performance 

using the Dplayer program, a program that plays back trials in real-time from data contained 

in the simulator log files.  The third group also periodically reviewed their performance using 

Dplayer, but its members were also instructed and encouraged to engage in self-explanation 

of control actions while reviewing their trials. 

In each of these experiments, subjects would perform various tasks on DURESS II under 

both normal and fault conditions.  In the analyses that follow, six measures used to gauge subject 

performance will be referred to.  These are: 

1. Trial Completion Time (TCT), the time taken for subjects to complete normal trials. 

2. Trial Completion Time Variance (CTV), the variance in completion times over a block of 

trials. 

3. Fault Detection Time (DET), the time elapsed between the occurrence of a fault and the 

subjects’ verbal detection of that fault. 

4. Diagnosis Accuracy (DA), a score assigned to subjects’ diagnoses, ranging from a score of 0 

for an irrelevant utterance to 3 for a statement of the location and root cause of the fault 

(Pawlak & Vicente, 1996). 

5. Diagnosis Time (DGT), the time elapsed between the occurrence of a fault and the subject’s 

verbalization of a correct root cause diagnosis (i.e., DA of 3). 

6. Compensation Time (CT), the time elapsed between the onset of a fault and a subject’s 

proper termination of a trial.  Trials for which subjects were not able to regain control over 

the plant after a fault are treated as missing data. 
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While previous analyses of the data from these experiments have been thorough and have 

uncovered many interesting results, the three techniques described above have not yet been 

applied to these data.  This will be done in the sections that follow. 

Confidence Intervals and Graphical Analyses of Variance 

In the introduction to CIs and graphical analyses of variance, it was stressed that this 

technique is a useful way of using the information in an ANOVA table for data description.  

Since we will be doing explicit analyses of power and effect size in later sections, graphical 

ANOVAs will not help us to learn a great deal that is new in the context of these already 

completed investigations.  Rather, they will help to make future analyses more informative and 

efficient.  As this is the case, in this section we will not construct graphical ANOVAs to retell the 

stories of old analyses.  This section will simply serve as a further introduction to the use of CIs 

through two concrete and informative examples taken from the JAERI dataset.   

These two cases both involve the JAERI II investigation (Hunter et al., 1995), and involve 

the construction of CIs around the group means of trial completion time for the two main effects 

of the investigation, interface and training.  In the original contract report, Hunter et al. (1995) 

reported that for the dependent variable TCT, there was a significant interface effect but no 

significant training effect.  While means for the interface condition were reported (revealing that 

subjects using the P interface had faster completion times than those using the P+F interface), 

means for the training condition were not reported.  This leaves at least four relevant questions 

unanswered:  (1) In general terms, how powerful is the conclusion on the interface (INT) effect?  

(2)  How close to significant (i.e., p < .05) was the training (TRAIN) effect?  (3)  What was the 

pattern of observed means for the two effects?  (4) What are the effect sizes for both INT and 

TRAIN? Graphical ANOVAs will be constructed for both of these effects to answer these 

questions. 

Following the procedure outlined in Section 2.1, graphical ANOVAs can be constructed 

directly from a standard ANOVA table.  Since it has not been common practice in our laboratory 

up to this point to add ANOVA tables explicitly to technical reports, we had to reconstruct the 

analyses documented by Hunter et al. (1995).   The observant reader will notice the results of our 

analysis of variance (Table 5) differ from those reported by Hunter, et al.  While it is unfortunate 

that we were not able to reproduce the original analysis, our results differ only slightly from 

those originally reported, and achieve the same patterns of significance. 



Research on the Characteristics of Long-Term Adaptation (II) 

 

40

Table 5:  ANOVA table for JAERI II trial completion time. 
Source df SS MS F p

INT 1 3571846 3571846 8.93 0.0073
TRAIN 1 100423 100423 0.25 0.6217

INT*TRAIN 1 492897 492897 1.23 0.2801
SUBJECT(INT*TRAIN) 20 7997133 399856  

TRIAL 49 6341912 129426 6.12 0.0001
INT*TRIAL 49 863436 17621 0.83 0.7862

TRAIN*TRIAL 45 3765018 83667 3.96 0.0001
INT*TRAIN*TRIAL 44 938635 21332 1.01 0.4582

SUBJECT*TRIAL(INT*TRAIN) 897 18973025 21151  

To construct a graphical ANOVA first for the INT effect, recall that CIs are constructed as: 

 ϕα
ε

,2/tn
MSMCI j 








±= . 

So, to construct a CI for the INT, the only unknowns left are the group means, which can be 

easily calculated from the data as 650.72 s for the P group and 533.47 s for the P+F group.   For 

both groups, we use the mean square for the error term in the F-test, MS[SUBJECT(INT* 

TRAIN)], as MSε.  Given that 12 subjects performed 50 trials5, the n for this analysis is (12)(50) 

= 600.  Finally, ϕ is equal to the error df, which is 20 in this case. 

So, for the P group, 

 CI = 086.2
600

39985672.650 







±  

  = 85.5372.650 ± , 

and for the P+F group, 

 CI = 85.5347.533 ± . 

Stated in more formal terms, we have: 

 }57.70487.596{ ≤≤ Pµ  

 }32.58762.479{ ≤≤ +FPµ . 

For the training effect, the means are 593.14 s for the no training group and 589.38 s for 

the AH training group.  Since hypotheses on training are based on the same error term as 

                                                 
5 While this is an unbalanced ANOVA, the TRIAL df still gives a good indication of what the number of trials was 
— less one — performed by all subjects. 
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hypotheses on interface, CIs on training will have the same width as CIs on interface (53.85 s).  

So, 

 }99.64629.539{ ≤≤ NOµ  

 }23.64353.535{ ≤≤ AHµ . 

These confidence intervals have been plotted in Figures 5 and 6. 
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Figure 5:  Graphical ANOVA on interface 
effect for JAERI II completion time. 
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Figure 6:  Graphical ANOVA on training 
effect for JAERI II completion time. 

From these two charts, the four questions posed above can now be answered.   

• In general, how powerful is the conclusion on the INT effect?  Since there is a 

noticeable distance between the two CIs for the INT effect, it is obvious that this 

experiment had sufficient power to enable us to make conclusions from the data.  

However, since the distance between the CIs is, relatively speaking, quite small, obvious 

improvements can be made in experimental power.  In fact, the power of this conclusion 

is about 0.77, just slightly below the value of 0.8 which is generally considered to be 

‘acceptable’ power. 
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• How close to significant (i.e., p < .05) was the training (TRAIN) effect?  Since the 

means of the two TRAIN conditions are very close together with respect to the width of 

the CIs, the p-value of 0.62 obtained for the TRAIN effect gains some meaning.  While 

these two graphs do not output specific p-values, they do afford a much more intuitive 

interpretation of significance. 

• What was the pattern of observed means for the two effects?  While this relatively 

simple question finds no answer in the ANOVA table, it is quite obvious from these two 

graphs.  Subject using the P interface were slower than those using the P+F interface, 

and subjects who underwent no training were only slightly slower than those who were 

given AH training. 

• What are the effect sizes for both INT and TRAIN? Recall that effect size is the 

difference between the two group means divided by the variance in the data, or obssd |/| .  

While the information necessary to calculate this parameter is contained in the ANOVA 

table, the calculations are hardly intuitive.  Notice, however, that both the distance 

between the means and the variance in the data is presented graphically on the CI plots, 

affording an intuitive calculation of effect size.  From the two graphs above, it can be 

seen that the effect size for INT is at least moderate (i.e., greater than 0.4) while the 

effect size for the TRAIN effect is most certainly small (i.e., much less than 0.4).  In 

fact, the effect size for INT is 0.44 and the effect size for TRAIN if 0.07, figures that are 

at least in line with the estimates given. 

It could be argued that it is not practical to discard standard ANOVA reporting given the 

current standards of most journals in the behavioural sciences.  While this might be the case, the 

example above has shown that confidence intervals at the very least complement standard 

ANOVA reports by providing intuitive information on some important parameters (such as 

power and effect size) that can only be extracted from the ANOVA table with some effort and by 

longhand calculation.  CI plots also present information about the patterns in group means, data 

that simply cannot be found in an ANOVA table.   

Power Analysis 

Since power analyses have never before been performed on the data from the experiments 

performed for JAERI in previous contracts (Christoffersen et al., 1994; Howie et al., 1996; 
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Hunter et al., 1995), in this section the results of power analyses performed on selected tests for 

all of these experiments will be presented. 

Power analyses were carried out for each of the JAERI experiments on inferences 

involving each of the six dependent measures introduced in the background.  The results of these 

analyses will be broken down by experiment and then by dependent measure.   

As was mentioned above, while the various experimenters were quite conscientious to 

report F and p-values for the analyses that turned out to be significant, useful records of the full 

ANOVA tables were not kept.  As a result, we had to rerun the analyses.  Our new analyses 

closely, though not exactly, match those reported previously. 

JAERI I.  In the JAERI I investigation, three effects are relevant to an analysis of power:  

the interface effect (INT), the effect of experience as coded by trial number (TRIAL), and the 

interaction between interface and experience (INT*TRIAL).  A power analysis for TCT is 

reproduced in Table 6, along with values for φ and power (1-β).  (To save space, the sums of 

squares have not been included in the ANOVA tables in this section, but these can easily be 

found by multiplying the mean squares by their corresponding degrees of freedom.  In addition, 

to help in identifying those effects that have appreciable power, in the tables that follow all 

effects with a power of greater than 0.80 have been shaded.) 

Table 6:  Power analysis on TCT for JAERI I. 
Source df MS F p φ 1 - β 

INT 1 131617 0.18 0.6907 undef. < 0.306 
SUBJECT(INT) 4 696102   

TRIAL 204 79591 6.91 0.0001 2.43 > 0.99 
INT*TRIAL 202 11773 1.03 1.03 0.17 < 0.30 

TRIAL*SUBJECT(INT) 719 11454   

These results reveal that the TRIAL effect had a very high power, while the other effects 

achieved only low power.  The high power of the trial effect indicates that the finding that 

subjects did learn over the course of the experiment is quite reliable.   

Since longitudinal experiments like JAERI I are expensive and difficult to carry out, a 

more detailed power analysis on TCT was carried out.  In this analysis, the experiment was split  

                                                 
6 Power in this report is often reported as < 0.30.  This is because most power charts do not give powers for low 
values of φ (e.g., Kirk, 1995; Pearson & Hartley, 1951) 
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Table 7:  Block definitions 
Trials Block Trials Block

1-18 1 119-138 7
19-38 2 139-158 8
39-58 3 159-178 9
59-78 4 179-198 10
79-98 5 199-217 11

99-118 6

Table 8:  Power analysis on TCT by block for JAERI I. 
Block Effect dfeffect dferror MSW MSE p φ 1-β

1 INT 1 4 108097 451408 0.65 undef. < 0.30
1 TRIAL 17 52 152100 36385 < 0.01 1.73 0.94
1 INT*TRIAL 15 52 38150 36385 0.42 0.21 < 0.30
2 INT 1 4 39 31785 0.97 undef. < 0.30
2 TRIAL 19 65 29848 7125 < 0.01 1.74 0.96
2 INT*TRIAL 19 65 4523 7125 0.86 undef. < 0.30
3 INT 1 4 35982 57336 0.23 0.71 < 0.30
3 TRIAL 19 67 208153 12082 < 0.01 3.89 > 0.99
3 INT*TRIAL 19 67 17248 12082 0.14 0.64 < 0.30
4 INT 1 4 4742 48075 0.77 undef. < 0.30
4 TRIAL 18 63 8504 8321 0.45 0.14 < 0.30
4 INT*TRIAL 18 63 10052 8321 0.28 0.44 < 0.30
5 INT 1 4 99371 20827 0.09 1.37 0.32
5 TRIAL 17 63 19660 10202 0.03 0.94 0.5
5 INT*TRIAL 17 63 1919 10202 0.99 undef. < 0.30
6 INT 1 4 105285 38021 0.17 0.94 0.50
6 TRIAL 18 69 12757 6094 0.02 1.02 0.54
6 INT*TRIAL 18 69 7879 6094 0.22 0.53 < 0.30
7 INT 1 4 59989 66365 0.40 undef. < 0.30
7 TRIAL 19 69 6045 5535 0.39 0.3 < 0.30
7 INT*TRIAL 19 69 4676 5535 0.65 undef. < 0.30
8 INT 1 4 10554 44184 0.64 undef. < 0.30
8 TRIAL 18 62 12802 8627 0.14 0.66 < 0.30
8 INT*TRIAL 18 62 13361 8627 0.10 0.72 < 0.30
9 INT 1 4 10846 78872 0.73 undef. < 0.30
9 TRIAL 17 61 8288 5090 0.14 0.66 < 0.30
9 INT*TRIAL 17 61 4804 5090 0.53 undef. < 0.30

10 INT 1 4 10 79631 0.99 undef. < 0.30
10 TRIAL 16 53 9586 5841 0.09 0.78 < 0.30
10 INT*TRIAL 16 53 7204 5841 0.28 0.47 < 0.30
11 INT 1 4 2705 116667 089 undef. < 0.30
11 TRIAL 16 55 7773 8437 0.55 undef. < 0.30
11 INT*TRIAL 16 55 5311 8437 0.85 undef. < 0.30

into 11 blocks of approximately 19 trials as shown in Table 7.  The purpose of this analysis was 

to determine the number of blocks for which the TRIAL effect was powerful, as those are the 
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blocks in which a rapid rate of learning was most likely occurring.  The results of this analysis 

are shown in Table 8. 

From this table it can be seen that the only effect to achieve an appreciable power was 

TRIAL, and that this only occurred in blocks 1-3 (trials 1-58).  This indicates that reasonable 

conclusions about experience effects can be made over the first three blocks only, or in other 

words, that dramatic learning effects can be seen in blocks 1-3 but not later.  This is not to say 

that no learning occurs over blocks 4 and 11, but rather that the learning curve has flattened out 

in these blocks.  This finding shows that the use of only 67 trials in JAERI II, IIIa, and IIIb is 

valid as a more efficient experimental strategy than the 217 trials of JAERI I.  According to the 

above findings, the strategy allows enough time for subjects to achieve relatively stable 

performance. 

Table 9:  Power analysis on JAERI I CTV. 
Source df MS F p φ 1 - β 

INT 1 23768 5.60 0.07 1.52 0.34 
SUBJECT(INT) 4 4243   

BLOCK 10 18658 4.40 0.08 2.27 > 0.99 
INT*BLOCK 10 2521 0.90 0.54 undef.  

BLOCK*SUBJECT(INT) 40 2807   

A power analysis was also performed on CTV (Table 9).  The only effect to achieve 

appreciable power is BLOCK, the blocks of trials over which variance was calculated (see Table 

7).  Recall that one clear finding of the JAERI I investigation was that subjects using the P+F 

interface exhibited lower CTV than subjects using the P interface.  These findings show that the 

power for that conclusion is quite low.  As there were only three subjects per group in this 

experiment, this is not surprising.  When the data from the ANOVA table was used to predict the 

power of this conclusion for greater numbers of subjects (see Kirk, 1995), power increased to 

0.80 at 8 subjects per group. 

Table 10:  Power analysis on JAERI I DET. 
 Source df MS F p φ 1 - β 

INT 1 61485 2.25 0.21 0.79 < 0.30 
SUBJECT(INT) 4 27367  

TRIAL 1 34252 1.30 0.32 0.39 < 0.30 
TRIAL*INT 1 57417 2.18 0.21 0.77 < 0.30 

TRIAL*SUBJECT(INT) 4 26309  
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Table 11:  Power analysis on JAERI I DA. 
Source df MS F p φ 1 - β 

INT 1 4.23 11.39 0.03 2.28 0.72 
SUBJECT(INT) 4 0.37   

TRIAL 8 0.90 0.91 0.53 undef. < 0.30 
TRIAL*INT 8 0.51 0.51 0.83 undef. <0.30 

TRIAL*SUBJECT(INT) 23 1.00   

Table 12:  Power analysis on JAERI I DGT. 
Source df MS F p φ 1 - β 

INT 1 1277 0.47 0.56 undef. < 0.30 
SUBJECT(INT) 4 2706  

TRIAL 1 3645 0.83 0.46 undef. < 0.30 
TRIAL*SUBJECT(INT) 3 3198  

Table 13:  Power analysis on JAERI I CT. 
Source df MS F p φ 1 - β 

INT 1 51439 2.66 0.18 0.91 < 0.30 
SUBJECT(INT) 4 19361  

TRIAL 1 39125 3.39 0.14 1.09 < 0.30 
TRIAL*INT 1 29095 2.52 0.19 0.89 < 0.30 

SUBJECT(INT*TRIAL) 4 11524  

Power analyses were also performed on fault detection time (Table 10), diagnosis accuracy 

(Table 11), diagnosis time (Table 12), and compensation time (Table 13) for JAERI I.  The 

power for all effects except INT for DA was low.  Although the conclusion for DA only has a 

power of 0.72, considering that there were only three subjects per group this conclusion has a 

relatively high power.  In fact, if only one subject were to be added per group, this conclusion 

would have a power of 0.87.  This is an important result as one of the major findings of the 

JAERI I investigation was that the P+F interface supports fault diagnosis better than the P 

interface.  That this conclusion has high power is another confirmation of its validity. 

JAERI II.  The JAERI II experiment included both INT and TRIAL effects, but also had a 

TRAIN effect with two levels (no training and AH training).  In this investigation, subjects were 

nested within both INT and TRAIN, making for a slightly more complex experimental design 

than JAERI I. 

A power analysis was first performed on TCT (Table 14). 
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Table 14:  Power analysis on TCT for JAERI II. 
Source df MS F p φ 1 - β

INT 1 3571846 8.93 < 0.01 1.99 0.78
TRAIN 1 100423 0.25 0.62 undef. < 0.30

INT*TRAIN 1 492897 1.23 0.28 0.34 < 0.30
SUBJECT(INT*TRAIN) 20 399856  

TRIAL 49 129426 6.12 < 0.01 2.24 > 0.99
INT*TRIAL 49 17621 0.83 0.79 undef. < 0.30

TRAIN*TRIAL 45 83667 3.96 < 0.01 1.70 0.97
INT*TRAIN*TRIAL 44 21332 1.01 0.46 0.09 < 0.30

SUBJECT*TRIAL(INT*TRAIN) 897 21151  

Four things can be noticed from this analysis.  First, the INT effect has nearly reached the 

benchmark power of 0.8 (adding one more subject per group would bring the power for this 

effect up to 0.82).  This is a notable increase in power for the INT effect on this measure from 

JAERI I, where the same effect had a power of < 0.30.  This increase can be attributed to the 

quadrupled sample size of JAERI II.  Second, this experiment unfortunately had low power to 

make conclusions about the TRAIN effect.  Third, the power for TRIAL was very high, 

indicating that this experiment was sensitive enough to detect experience effects.  Finally, and to 

supplement the second result, this experiment had high power to make conclusions about the 

interaction between INT and TRAIN.  This supports the conclusions made by Hunter, et al. 

(1995) on this interaction. 

A power analysis on CTV is presented in Table 15. 

Table 15:  Power analysis on CTV for JAERI II. 
Source df MS F p φ 1-β 

INT 1 35977 12.22 < 0.01 2.37 0.88 
TRAIN 1 375 0.13 0.72 undef. < 0.30 

INT*TRAIN 1 217 0.07 0.79 undef. < 0.30 
SUBJECT(INT*TRAIN) 20 2943   

This table reveals that the INT effect had a much higher power than was observed in the 

JAERI I investigation.  Again, this is most probably due to the quadrupling of the sample size in 

this experiment. 

Power analyses on the four fault measures are shown in Tables 16-19. 
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Table 16:  Power analysis on DET for JAERI II. 
Source df MS F p φ 1-β

INT 1 19221 0.77 0.39 undef. < 0.30
TRAIN 1 18928 0.76 0.40 undef. < 0.30

INT*TRAIN 1 248 0.01 0.92 undef. < 0.30
SUBJECT(INT*TRAIN) 20 25051  

TRIAL 8 70052 6.92 < 0.01 2.28 > 0.99
INT*TRIAL 7 14950 1.48 0.19 0.64 < 0.30

TRAIN*TRIAL 8 17444 1.72 0.11 0.80 < 0.30
INT*TRAIN*TRIAL 7 8035 0.79 0.58 undef. < 0.30

SUBJECT*TRIAL(INT*TRAIN) 100 10119  

Table 17:  Power analysis on DA for JAERI II. 
Source df MS F p φ 1-β

INT 1 38.13 15.01 > 0.01 2.65 0.94
TRAIN 1 0.83 0.33 0.57 undef. < 0.30

INT*TRAIN 1 4.73 1.86 0.19 0.66 < 0.30
SUBJECT(INT*TRAIN) 20 50.80  

TRIAL 8 33.19 6.28 > 0.01 2.15 > 0.99
INT*TRIAL 7 6.98 1.54 0.17 0.68 < 0.30

TRAIN*TRIAL 8 6.09 1.15 0.34 0.36 < 0.30
INT*TRAIN*TRIAL 7 4.54 1.00 0.43 0.05 < 0.30

SUBJECT*TRIAL(INT*TRAIN) 132 99.66  

Table 18:  Power analysis on DGT for JAERI II. 
Source df MS F p φ 1-β 

INT 1 103251 3.37 0.08 1.09 < 0.30 
TRAIN 1 108110 3.53 0.08 1.13 < 0.30 

INT*TRAIN 1 175541 5.74 0.03 1.54 0.50 
SUBJECT(INT*TRAIN) 17 30593   

TRIAL 8 33169 1.87 0.10 0.87 < 0.30 
INT*TRIAL 6 51604 2.91 0.03 1.26  0.76 

TRAIN*TRIAL 8 21237 1.20 0.33 0.42 < 0.30 
INT*TRAIN*TRIAL 4 33966 1.91 0.17 0.68 < 0.30 

SUBJECT*TRIAL(INT*TRAIN) 41 17742   

Table 19:  Power analysis on CT for JAERI II. 
Source df MS F p φ 1-β

INT 1 481209 3.17 0.09 1.04 < 0.30
TRAIN 1 511405 3.37 0.08 1.09 < 0.30

INT*TRAIN 1 17422 0.11 0.74 undef. < 0.30
SUBJECT(INT*TRAIN) 20 151715  

TRIAL 8 766685 11.42 < 0.01 3.02 > 0.99
INT*TRIAL 7 9012 0.13 0.99 undef. < 0.30

TRAIN*TRIAL 8 62128 0.93 0.49 undef. < 0.30
INT*TRAIN*TRIAL 7 44517 0.66 0.68 undef. < 0.30

SUBJECT*TRIAL(INT*TRAIN) 132 67142  
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Fault trials in this investigation achieved higher power than those of JAERI I, most likely 

because of the increase in sample size between the two experiments.  The strongest finding here 

is that for three of the measures (DET, DA, and CT) the TRIAL effect has a very high power (> 

0.99 in all three cases).  The quadrupling of sample size has opened up the opportunity of 

making reliable claims on the effect of learning in fault performance.  The only other 

measure/effect combination to achieve a high power was the INT effect on diagnosis accuracy.  

Again, that this conclusion has high power is a validation of the conclusion that the P+F interface 

induces more effective fault diagnosis than the P interface. 

JAERI II as a Mini-Experiment.  A second power analysis on the data from JAERI II was 

performed, this time considering only the data from the no-training group.  Isolating this group 

leaves a dataset similar to the JAERI I investigation, but with double the sample size.  This 

analysis should move us one step further towards understanding what sample size is appropriate 

for investigations with DURESS II. 

For this reduced data set, power analyses were performed on all six measures, and are 

documented in Tables 20-25. 

Table 20:  Power analysis on TCT for JAERI II no training data. 
Source df MS F p φ 1 - β 

INT 1 5357889 11.46 < 0.01 2.51 .89 
SUBJECT(INT) 10 467390   

TRIAL 61 298425 6.02 < 0.01 2.22 > 0.99 
TRIAL*INT 61 68816 1.39 0.03 0.62 < 0.30 

SUBJECT(INT*TRIAL) 574 49557   

Table 21:  Power analysis on CTV for JAERI II no training data. 
Source df MS F p φ 1 - β 

INT 1 15300 4.38 0.06 1.30 0.38 
SUBJECT(INT) 10 3493  

Table 22:  Power analysis on DET for JAERI II no training data. 
Source df MS F p φ 1 - β 

INT 1 6188 0.39 0.55 undef. < 0.30 
SUBJECT(INT) 10 158580   

TRIAL 7 19729 2.64 0.02 1.20 0.76 
TRIAL*INT 6 1618 0.22 0.97 undef. < 0.30 

TRIAL*SUBJECT(INT) 44 7468   
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Table 23:  Power analysis on DA for JAERI II no training data. 
Source df MS F p φ 1 - β 

INT 1 34.00 19.33 < 0.01 3.03 0.96 
SUBJECT(INT) 10 1.76   

TRIAL 7 4.32 6.85 < 0.01 2.94 > 0.99 
TRIAL*INT 6 1.68 2.66 0.02 1.19 0.75 

TRIAL*SUBJECT(INT) 59 0.63   

Table 24:  Power analysis on DGT for JAERI II no training data. 
Source df MS F p φ 1 - β 

INT 1 1124 0.03 0.86 undef. < 0.30 
SUBJECT(INT) 8 36419   

TRIAL 7 22390 1.98 0.11 0.92 < 0.30 
TRIAL*INT 4 42514 3.75 0.02 1.55 0.83 

TRIAL*SUBJECT(INT) 21 11335   

Table 25:  Power analysis on CT for JAERI II no training data. 
Source df MS F p φ 1 - β 

INT 1 337100 3.09 0.11 1.02 < 0.30 
SUBJECT(INT) 10 108936   

TRIAL 7 310756 4.59 < 0.01 1.77 0.96 
TRIAL*INT 6 37563 0.55 0.76 undef. < 0.30 

TRIAL*SUBJECT(INT) 57 67776   

Not surprisingly, increases in power can be observed almost across the board when these 

results are compared to those from JAERI I.  These data achieve appreciable power for: (1) the 

INT and TRIAL effects for TCT, (2) the INT and TRIAL effects for DA, and (3) the TRIAL 

effect for CT.  The TRIAL effect for DET (power of 0.76) is predicted to reach appreciable 

power at 7 subjects per group. 

These data also achieved appreciable power for the TRIAL*INT interaction for DGT.  

Unfortunately, hypotheses could not be tested on this effect for JAERI I due to a lack of degrees 

of freedom.  The only measure for which the JAERI I investigation was more powerful was 

CTV.  This is understandable as the JAERI I investigation had many more trials over which to 

calculate variance. 

JAERI IIIa.  This experiment used a similar experimental design to JAERI I, with the INT 

effect now representing the P+F and divided P+F interfaces.  Power analyses were performed on 

the data from this experiment (Tables 26 - 31). 
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Table 26:  Power analysis on TCT for JAERI IIIa. 
Source df MS F p φ 1 - β 

INT 1 5144093 10.74 < 0.01 2.21 0.81 
SUBJECT(INT) 10 478783   

TRIAL 55 421850 12.50 < 0.01 3.36 > 0.99 
TRIAL*INT 55 34799 1.03 0.41 0.17 < 0.30 

TRIAL*SUBJECT(INT) 128 33756   

Table 27:  Power analysis on CTV for JAERI IIIa. 
Source df MS F p φ 1 - β 

INT 1 16937 3.36 0.09 1.09 < 0.30 
SUBJECT(INT) 10 5036  

Table 28:  Power analysis on DET for JAERI IIIa. 
Source df MS F p φ 1 - β 

INT 1 2378 0.56 0.47 undef. < 0.30 
SUBJECT(INT) 10 4245   

TRIAL 8 47328 26.22 < 0.01 4.73 > 0.99 
TRIAL*INT 8 4122 2.28 0.04 1.07 0.50 

TRIAL*SUBJECT(INT) 49 1805   

Table 29:  Power analysis on DA for JAERI IIIa. 
Source df MS F p φ 1 - β 

INT 1 0.039 0.01 0.91 undef. < 0.30 
SUBJECT(INT) 10 3.072   

TRIAL 8 2.863 2.93 < 0.01 1.31 0.75 
TRIAL*INT 8 1.516 1.55 0.15 0.70 < 0.30 

TRIAL*SUBJECT(INT) 80 0.976   

Table 30:  Power analysis on DGT for JAERI IIIa. 
Source df MS F p φ 1 - β 

INT 1 132 0.01 0.93 undef. < 0.30 
SUBJECT(INT) 8 17209   

TRIAL 8 26264 1.03 0.48 0.16 < 0.30 
TRIAL*INT 5 35927 1.41 0.32 0.60 < 0.30 

TRIAL*SUBJECT(INT) 8 25548   

Table 31:  Power analysis on CT for JAERI IIIa. 
Source df MS F p φ 1 - β 

INT 1 1059499 10.78 < 0.01 2.21 0.81 
SUBJECT(INT) 10 98303   

TRIAL 5 613984 17.99 < 0.01 3.76 > 0.99 
TRIAL*INT 5 100271 2094 0.02 1.27 0.65 

TRIAL*SUBJECT(INT) 49 34120   
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These results show that appreciable power was achieved for the measures of TCT and CT 

for both INT and TRIAL effects, and for DET on only the TRIAL effect.  In comparing these 

results to those of JAERI I and the JAERI II mini-experiment, it is interesting to note that this 

investigation achieved higher power on time-based measures (TCT and CT) while JAERI I and 

the JAERI II mini experiment achieved higher power on fault-based measures (DET, but 

especially DA and DGT).  This is most easily explained by contrasting the different experimental 

manipulations of these investigations.  In JAERI I and the JAERI II mini experiment, a 

traditional interface (P) was being compared against one specially designed to support operators 

in abnormal situations (P+F), while in JAERI IIIa all subjects had access to the informational 

enhancements of the P+F interface except that subjects in one group used an interface that split 

up the levels of information.  As a result, a slight time penalty was incurred for the one group 

when switching between these levels.  Thus, it is not surprising to see that JAERI I and the 

JAERI II mini-experiment had power to detect differences in fault performance while the JAERI 

IIIa experiment had power to detect differences in trial completion time either in normal or fault 

conditions. 

JAERI IIIb.  The last power analyses were performed on the data from the JAERI IIIb 

investigation.  The experimental design here is similar to JAERI IIIa, except that the main effect 

is now TRAIN and represents the three training groups of this experiment (no training, replay, 

and replay plus self-explanation).  The results of these analyses are shown in Tables 32 - 37.  

Table 32:  Power analysis on TCT for JAERI IIIb. 
Source df MS F p φ 1 - β
TRAIN 2 56164 0.05 0.96 undef. < 0.30

SUBJECT(TRAIN) 15 1233021  
TRIAL 55 336458 12.10 < 0.01 3.30 > 0.99

TRIAL*TRAIN 109 25779 0.93 0.67 undef. < 0.30
TRIAL*SUBJECT(TRAIN) 779 27808  

Table 33:  Power analysis on CTV for JAERI IIIb. 
Source df MS F p φ 1 - β 
TRAIN 2 2349 0.32 0.73 undef. < 0.30 

SUBJECT(TRAIN) 15 7231  
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Table 34:  Power analysis on DET for JAERI IIIb. 
Source df MS F p φ 1 - β 
TRAIN 2 14789 1.03 0.38 0.14 < 0.30 

SUBJECT(TRAIN) 14 14390   
TRIAL 8 37281 4.23 < 0.01 1.71 0.93 

TRIAL*TRAIN 16 11220 1.27 0.24 0.51 < 0.30 
TRIAL*SUBJECT(TRAIN) 74 8819   

Table 35:  Power analysis on DA for JAERI IIIb. 
Source df MS F p φ 1 - β 
TRAIN 2 5.79 1.48 0.26 0.56 < 0.30 

SUBJECT(TRAIN) 15 3.92   
TRIAL 8 1.87 1.71 0.10 0.70 < 0.30 

TRIAL*TRAIN 16 1.38 1.26 0.23 0.42 < 0.30 
TRIAL*SUBJECT(TRAIN) 120 1.09   

Table 36:  Power analysis on DGT for JAERI IIIb. 
Source df MS F p φ 1 - β 
TRAIN 2 72849 6.33 0.01 1.88 0.74 

SUBJECT(TRAIN) 13 11517   
TRIAL 8 38219 1.21 0.34 0.44 < 0.30 

TRIAL*TRAIN 15 43724 1.39 0.24 0.60 < 0.30 
TRIAL*SUBJECT(TRAIN) 25 31500   

Table 37:  Power analysis on CT for JAERI IIIb. 
Source df MS F p φ 1 - β 
TRAIN 2 35300 0.16 0.85 undef. < 0.30 

SUBJECT(TRAIN) 15 219587   
TRIAL 6 355754 9.33 < 0.01 2.67 > 0.99 

TRIAL*TRAIN 12 16482 0.43 0.93 undef. < 0.30 
TRIAL*SUBJECT(TRAIN) 86 38124   

From these results we can see that in terms of detecting differences in trial completion time 

and fault detection and diagnosis, JAERI IIIb was a weak experiment.  For the measures of TCT, 

DET, and CT, TRIAL is the only effect to achieve appreciable power.  These results indicate that 

conclusions about learning effects can reasonably be made on time-based measures.  It should be 

noted that this experiment was relatively powerful as well in terms of the INT effect for DGT, 

which is predicted to only require one more subject to reach a power of 0.80. 

Discussion.  The results of these power analyses are encouraging.  Across the four 

experiments for which analyses were performed, many of the conclusions made by previous 
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experimenters have been shown to have appreciable power.  In the JAERI I, and especially in the 

JAERI II mini experiment, fault-based measures achieved high power, validating the conclusions 

made on the extra support for abnormal situations afforded by the P+F interface over the P 

interface.  Further, in the JAERI II mini-experiment, the INT effect on CTV achieved 

appreciable power, and in JAERI I the same effect/measure combination had a relatively high 

power considering the small sample size.  These results validated the conclusions made to the 

effect that the P+F interface induces more consistent behaviour.  It is reassuring to have revealed 

this reconfirmation of these results. 

As these analyses involved only time- and fault-based measures, few of the major 

conclusions from JAERI II, JAERI IIIa, or JAERI IIIb were validated.  While this is unfortunate, 

for future experiments it is useful understand that time- and fault-based measures might not be 

sensitive to changes induced by training and information form manipulations like those found in 

these experiments. 

These analyses have also made an important methodological contribution to this research 

programme.  First, the power analyses by block for JAERI I confirmed that 67 trials (that is, 

about a month of experimentation time) is a suitable duration for experiments.  While experience 

from the JAERI I investigation has demonstrated that subjects still learn new strategies well past 

trial 67, the analyses introduced here support 67 trials as a more efficient experimental duration 

than the 217 trials of JAERI I.  Second, these analyses provide a motivation for a small increase 

in sample size.  In four instances (the INT effect for JAERI I CTV and JAERI II TCT, the 

TRIAL effect for the JAERI II mini experiment, and the TRAIN effect for JAERI IIIb DGT) 

power can be predicted to increase to > 0.80 with the addition of one or two subjects per group.  

Thus, these analyses indicate that future experiments should be formed from groups of 7-8 

subjects, each performing 67 trials on DURESS II. 

Bayesian Methods to Assert Largeness or Smallness 

The final set of analyses performed during this study used the Bayesian methods of 

Rouanet (1996) to determine and make inferences on the effect sizes for the six measures 

described above.  Since we were not able to obtain the software needed to perform multi-df 

analyses, we were limited to working with the data for 1-df effects only.  Fortunately, 1-df effects 

are fairly common in the research that we have performed for JAERI, and this restriction still 
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allowed us to analyse the main effects from all experiments except JAERI IIIb (which had a 2-df 

main effect).  The results of these analyses are presented below in three formats.   

Table 38 first presents a chart containing the effect sizes and the data from which they 

were derived.  Though not terribly informative, this table is included to help the reader in 

reconstructing any of the analyses, should she want to.  Figures 7 – 11 present the results from 

the chart as graphs, broken down by experiment.  Finally, Figures 12 – 17 present the same 

results broken down by measure, across experiments.  A discussion of the results follows these 

tables and figures. 

Table 38:  1-df effect size analyses. 
Expt Meas Effect n MSeffect MSerror Subj. / 

Group
dferror (d/s)obs CI Upper CI Lower

J1 TCT INT 1131 131617.0 696102.0 3 4 0.032 0.112 0.032
 CTV INT 1131 23768.0 4243.0 3 4 0.172 0.112 0.112
 DET INT 52 61485.6 27368.0 3 4 0.509 0.521 0.509
 DA INT 54 4.2 0.4 3 4 1.125 0.511 0.511
 DGT INT 19 1277.0 2706.4 3 4 0.386 0.862 0.386
 CT INT 54 51439.0 19361.0 3 4 0.543 0.511 0.511

J2 TCT INT 1108 3571846.0 399856.0 12 20 0.440 0.195 0.195
 CTV INT 1108 35977.0 2943.1 12 20 0.515 0.195 0.195
 DET INT 189 19221.0 25051.0 12 20 0.312 0.472 0.312
 DA INT 258 38.1 2.5 12 20 1.182 0.404 0.404
 DGT INT 100 103251.0 30593.0 12 20 0.900 0.649 0.649
 CT INT 186 481209.0 151715.0 12 20 0.640 0.476 0.476
 TCT TRAIN 1108 100423.0 399856.0 12 20 0.074 0.195 0.074
 CTV TRAIN 1108 376.0 2943.1 12 20 0.053 0.195 0.053
 DET TRAIN 189 18928.0 25051.0 12 20 0.310 0.472 0.310
 DA TRAIN 258 0.8 2.5 12 20 0.175 0.404 0.175
 DGT TRAIN 100 108110.0 30593.0 12 20 0.921 0.649 0.649
 CT TRAIN 186 511405.0 151715.0 12 20 0.660 0.476 0.476

J2- TCT INT 708 5354889.4 467390.9 6 10 0.441 0.179 0.179
MINI CTV INT 708 15300.0 3493.0 6 10 0.272 0.179 0.179

 DET INT 97 6188.0 15858.0 6 10 0.220 0.483 0.220
 DA INT 132 34.0 1.8 6 10 1.326 0.414 0.414
 DGT INT 58 1124.0 36419.9 6 10 0.080 0.624 0.080
 CT INT 94 337100.0 108936.0 6 10 0.629 0.490 0.490

J3a TCT INT 684 5144093.0 478783.0 6 10 0.434 0.182 0.182
 CTV INT 684 16937.0 5036.0 6 10 0.243 0.182 0.182
 DET INT 89 2378.0 4245.0 6 10 0.275 0.504 0.275
 DA INT 144 0.0 3.1 6 10 0.032 0.396 0.032
 DGT INT 39 132.7 17209.9 6 10 0.049 0.761 0.049
 CT INT 83 1059499.3 98303.0 6 10 1.248 0.522 0.522
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Figure 7:  Effect size analysis on JAERI I INT effect. 
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Figure 8:  Effect size analysis on JAERI II INT effect. 
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Figure 9:  Effect size analysis on JAERI II TRAIN effect. 
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Figure 10:  Effect size analysis on JAERI II mini experiment INT effect. 
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Figure 11:  Effect size analysis on JAERI IIIa INT effect. 
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Figure 12:  Effect size analysis on TCT across experiments. 
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Figure 13:  Effect size analysis on CTV across experiments. 
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Figure 14:  Effect size analysis on DET across experiments. 
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Figure 15:  Effect size analysis on DA across experiments. 
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Figure 16:  Effect size analysis on DGT across experiments. 
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Figure 17:  Effect size analysis on CT across experiments. 

A number of interesting results can be found in these figures.  We consider first Figures 7 – 

11 which detail the effect sizes within experiments, and help to reveal the largest effects within 

each experiment.  Four results stand out.  First, in the experiments comparing the P interface 

against the P+F interface (Figures 7, 8, and 10) the interface effect on diagnosis accuracy is 

large.  In other words, not only is the effect of the P+F interface on diagnosis accuracy reliable, it 

is also large.  Second, in the JAERI II experiment, training had the largest effect on diagnosis 

time (Figure 9).  Unfortunately, the graph clearly shows that we cannot assert largeness at the γ = 

0.9 level.  Third, in the JAERI IIIa experiment, the interface effect on compensation time was 

large (Figure 11).  Although a portion of the size of this effect can be accounted for by the time 

cost incurred in switching between interface levels, this is not the whole story.  Consider that the 

interface effect on TCT was small to moderate, and that this effect also includes the time cost of 

switching between levels.  If this is the case, then some other factor must have come into play to 

make the effect of interface on compensation time so larger than its effect on trial completion 

time.  While Howie, et al. (1996) do not address this point, it is likely that the divided interface 

had the effect of slowing subjects’ ability to make decisions because the information was divided 

over four displays.  Finally, it is notable that the effect of interface on completion time variance 

was not large in any of the experiments comparing the P and the P+F interfaces.  This result was 
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not expected, but can perhaps be explained by the method used in this study to analyse variances.  

So that we could use the measures researched, an ANOVA was performed on completion time 

variance, when it should more properly be analysed using a Cochran test for the homogeneity of 

variance (Winer, 1962/1971).  Since the test used was not well suited to the data in this case, the 

results are not necessarily valid. 

A second set of results can be read from the graphs comparing effect sizes within measures 

and across experiments (Figures 12 - 17).  Five results stand out here.  First, the interface effect 

on trial completion time (Figure 12) was small for JAERI I and small to moderate for JAERI II 

and IIIa.  The training effect on trial completion time for JAERI II was also small.  Second, the 

largest effect size for completion time variance was observed in the JAERI II experiment for the 

interface effect.  Third, little can be said about the effect sizes for fault detection time (Figure 14) 

and fault diagnosis time (Figure 16) as there a large amount of uncertainty in these data.  In fact, 

larger uncertainty can be noticed for all of the measures for fault trials when compared to the 

measures for normal trials as there was a smaller dataset for these calculations (recall that 

Bayesian CIs widen as neff is reduced).  Fourth, although there is much uncertainty in the effect 

sizes for fault compensation time, the effect of interface on this measure in JAERI IIIa was large 

(see above for an explanation).  Fifth, and most importantly, Figure 15 demonstrates that 

experiments comparing the P interface against the P+F interface had large interface effects on 

diagnosis accuracy.  Not only is the interface effect on diagnosis accuracy reliable for these 

experiments, it is also large. 

One final analysis was performed to test one of the statements made by Rouanet (1996) 

about this method of testing effect sizes:  “when the observed effect is very small, getting a 

statistically significant result — far from ruling out the conclusion of a small effect — is actually 

a cue for it” (p. 152).  He calls this the negligibility paradox.  As in this work we calculated a 

large pool of effect sizes that we have p-values to compare against (see  

Table 38), we decided to test this assertion.  This was done by plotting the p-values against 

their corresponding effect size.  The result of this analysis is shown in Figure 18. 
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Figure 18:  ANOVA p-values vs. effect sizes. 

Figure 18 shows that our data do not at all confirm Rouanet’s assertion.  If the negligibility 

paradox were correct, there should be a positive correlation between p-values and effect sizes, 

while Figure 18 shows a negative correlation.  A correlation analysis revealed a highly 

significant correlation (p < 0.0001) of –0.71 between p-values and effect sizes, indicating that 

our data show considerable deviation from this paradox. 

Conclusions 

In the preceding section, we have presented the results of applying three lesser-known data 

analysis techniques to our dataset.  It is our belief that the addition of these techniques to our 

arsenal of data analysis techniques has been, and will continue to be, very beneficial.  First of all, 

both the use of CIs and the calculation of effect sizes are powerful aids to data description.  The 

examples given show how CI estimation helps the experimenter intuitively to consider the 

patterns of means, experimental power, and effect size without losing sight of simple inferences 

on statistical significance.  The calculation of effect sizes has provided a new way to look at our 

data that can help in understanding which effects show promise of being large independent of 

statistical significance, thereby measuring practical significance. 
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Second, the power analyses conducted on much of the data from the JAERI experiments 

have confirmed that many of the conclusions of this research effort are powerful.  Most notably, 

high power was achieved on a number of fault-based measures, confirming that the P+F interface 

does support operators in abnormal situations.  Third, and related to this, the calculation of effect 

sizes has demonstrated that in addition to being powerful and significant, a number of the effects 

observed over the course of this program of research have been large.  Most notable here are the 

large interface effects on diagnosis accuracy.  Thus, the benefits of using the P+F interface, and 

the potential benefits of using EID in the design of interfaces for complex systems, can 

defensibly be said to be large. 

Finally, the power analyses have also provided some direction for future experiments.  

First of all, there is a strong indication that subjects are able to obtain a fairly stable level of 

expertise in an experiment of 67 trials.  While these shorter experiments do not provide the same 

opportunity for observing long-term adaptation as do longer experiments (like JAERI I), they are 

more manageable and allow the testing of a sufficient number of subjects to obtain good 

experimental power.  Second, in order to obtain good power in a variety of measures, much will 

be gained from increasing group size from the current standard of 6 subjects to 7 or 8. 

CONCLUSIONS 

The purpose of the literature review presented in this review is not to point a finger at 

individuals who have relied on NHST or ANOVA to analyse data.  We are just as guilty of 

uncritically using these techniques as anyone else.  After all, these are the techniques that we 

have all been taught, that are well known by journal editors and reviewers, and that our statistics 

packages support.  Thus, there are many pressures that cause people to continue to use the 

traditional methods.  As Loftus (1991) put it, “The more you reject the null hypothesis, the more 

likely it is that you’ll get tenure” (p. 103). 

After all, using some of the data analysis methods we have proposed here requires that we 

design our experiments differently too.  If we are going to conduct an individual level analysis 

like Vicente (1992) and Hammond et al. (1987) did, then we need to rely more on within-

subjects designs.  If we are going to use the MTMM advocated by Campbell & Fiske (1959), we 

need to have multiple constructs and multiple methods in a single experiment.  If we are going to 

be able to make point or interval predictions, we are going to have to develop stronger theories to 

guide experimentation.  If we are going to develop a more cumulative knowledge base, we are 
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going to have to engage in more replication than we have in the past.  Thus, a change in data 

analysis techniques is not a cosmetic change to be taken lightly.  Instead, it requires some deep 

changes in the way in research is conducted. 

Because of the enormity of this task, researchers typically find it easier to stick to what 

they are most comfortable with.  Meehl (1990) describes a typical reaction to the critiques of 

NHST and ANOVA that he has made over the years:  “Well, that Meehl is a clever fellow and he 

likes to philosophize, fine for him, it’s a free country.  But since we are doing all right with the 

good old tried and true methods of Fisherian statistics and null hypothesis testing, and since 

journal editors do not seem to have panicked over such thoughts, I will stick to the accepted 

practices of my trade union and leave Meehl’s worries to the statisticians and philosophers” (p. 

230).  In short, to effect a change in the way human factors engineers analyse their research data 

will not be easy: “Nothing short of a revolution will be required to escape from the 

methodological cul-de-sac into which the practice of hypothesis testing has led us” (Loftus & 

McLean, 1997, p. 151). 

Nevertheless, the winds of change have begun.  As editor of the journal Memory & 

Cognition, Loftus (1993a) has strongly encouraged authors to adopt non-traditional data analysis 

and presentation methods.  Furthermore, the American Psychological Association has recently 

struck a committee to examine the issue of what methods are best suited to analysing behavioural 

data.  Thus, after at least four decades, it seems that the revolution is finally gaining some 

potency.  

POSTSCRIPT 

Much of what we have said has been said before, but it is important that our 
graduate students hear it all again so that the next generation of ... scientists is 
aware of the existence of these pitfalls and of the ways around them. (Rosnow & 
Rosenthal, 1989, p. 1282) 
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