Work Models for Interface Design: Techniques and Applications in Complex Domains
Kim J. Vicente
DOI: 10.1177/154193129804200332

The online version of this article can be found at:
http://pro.sagepub.com/content/42/3/335

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
Human Factors and Ergonomics Society

Additional services and information for Proceedings of the Human Factors and Ergonomics Society Annual Meeting can be found at:

Email Alerts: http://pro.sagepub.com/cgi/alerts
Subscriptions: http://pro.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

>> Version of Record - Oct 1, 1998

What is This?
WORK MODELS FOR INTERFACE DESIGN:
TECHNIQUES AND APPLICATIONS IN COMPLEX DOMAINS

Kim J. Vicente
Cognitive Engineering Laboratory
Department of Mechanical & Industrial Engineering
University of Toronto
Toronto, Canada

The modeling of human work is ubiquitous in the cognitive engineering community. Modeling can take many diverse forms, but its goal is always the same: to provide designers with a deeper understanding of the needs of human operators. This understanding becomes ever more critical as work domains increase in complexity because the capability of designers to anticipate all of the needs in all possible contexts becomes less tenable without modeling tools. Why, then, is there such a proliferation of work analysis techniques? Even more importantly, which modeling techniques are most useful for what types of design problems? In this symposium, several papers will be presented describing the application of various modeling techniques to the design of complex work environments. An emphasis will be placed on identifying the modeling techniques that are useful, or not useful, for various types of application domains and for different design goals. The strengths of integrated modeling techniques will be examined as compared with their increased costs. The various presenters will provide guidance for the selection of design problems, the application and payoffs from the modeling effort, and the use of results for design.